
An ACL2 Mechanization of an Axiomatic Framework
for Weak Memory

Benjamin Selfridge

The University of Texas at Austin

benself@cs.utexas.edu

May 1, 2015

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 1 / 29



Outline

Introduction

Problematic programming examples

Proposed memory model framework (Alglave et. al.)

ACL2-based formalization of this framework

Use of ACL2 to validate hand proofs

Current work: x86-targeted approach

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 2 / 29



Motivating Examples

Certain multiprocessor programs may behave differently when run on
different architectures.

Let’s consider two programs, and examine their possible outcomes.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 3 / 29



Example 1

P0 P1

a) m0 ← 1 c) m1 ← 1
b) r0 ← m1 d) r1 ← m0

One might expect the following possible outcomes:

1 r0 = 1, r1 = 1 (a, c, b, d)

2 r0 = 0, r1 = 1 (a, b, c, d)

3 r0 = 1, r1 = 0 (c, d, a, b)

We do not expect r0 = 0, r1 = 0...
But this can happen on x86, PowerPC, and ARM!

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 4 / 29



Example 1

P0 P1

a) m0 ← 1 c) m1 ← 1
b) r0 ← m1 d) r1 ← m0

One might expect the following possible outcomes:

1 r0 = 1, r1 = 1 (a, c, b, d)

2 r0 = 0, r1 = 1 (a, b, c, d)

3 r0 = 1, r1 = 0 (c, d, a, b)

We do not expect r0 = 0, r1 = 0...
But this can happen on x86, PowerPC, and ARM!

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 4 / 29



Example 2

P0 P1

a) r0 ← m0 c) r1 ← m1

b) m1 ← 1 d) m0 ← 1

One might expect the following possible outcomes:

1 r0 = 0, r1 = 0 (a, c, b, d)

2 r0 = 0, r1 = 1 (a, b, c, d)

3 r0 = 1, r1 = 0 (c, d, a, b)

We do not expect r0 = 1, r1 = 1.
This never happens on x86, but it can occur on PowerPC and ARM.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 5 / 29



Example 2

P0 P1

a) r0 ← m0 c) r1 ← m1

b) m1 ← 1 d) m0 ← 1

One might expect the following possible outcomes:

1 r0 = 0, r1 = 0 (a, c, b, d)

2 r0 = 0, r1 = 1 (a, b, c, d)

3 r0 = 1, r1 = 0 (c, d, a, b)

We do not expect r0 = 1, r1 = 1.
This never happens on x86, but it can occur on PowerPC and ARM.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 5 / 29



What’s going on?

Modern MP architectures are not sequentially consistent (SC is too
inefficient to implement)

x86, Power, ARM all have“relaxed” or “weak” memory models

They are all different

Some are informally specified

Many attempts to make them rigorous have been flawed (unsound
w.r.t actual hardware)

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 6 / 29



Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 7 / 29



Herding Cats: Modelling, Simulation, Testing, and Data
Mining for Weak Memory (Alglave, Maranget, Tautschnig)

This paper attempts to unify these various memory models.

Develops a common language (“framework”) for weak memory specs

General enough to capture: SC, x86, Power, ARM

“We believe that these models would benefit from stating principles that
underpin weak memory as a whole, not just one particular architecture or
language.”

This work actually exposed bugs in ARM implementations!

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 8 / 29



Herding Cats: Overview

Description:

Given a concurrent program, a multitude of executions are possible

Executions are represented as directed graphs
I Nodes are read/write events
I Edges represent dependencies between events

Different architectures “allow” different subsets of executions

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 9 / 29



Herding Cats: Events

Two types of events: reads & writes

Components of an event:

Type (read/write)

Memory address

Value read/written

Processor ID

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 10 / 29



Herding Cats: Executions

Definition

An execution is a tuple (E, po, rf, co, fr) where E is a set of events (nodes)
and po, rf, co, fr are relations (edges) on E.

Let’s look at these four relations in a little more detail.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 11 / 29



Herding Cats: Example of the four relations

What does all this mean?

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 12 / 29



Herding Cats: po (program order)

e
po−→ e ′: e precedes e ′ in program order.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 13 / 29



Herding Cats: co (coherence order)

w
co−→w ′: write w becomes globally visible before w ′.

Only applies to writes at the same location.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 14 / 29



Herding Cats: rf (read-from)

w
rf−→ r : write w supplied the value that r reads.

Only applies to events at the same location.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 15 / 29



Herding Cats: fr (from-read)

r
fr−→w : read r “reads from” a write that precedes w in coherence order.

Only applies to writes at the same location.

Actually, fr is defined in terms of rf and co: fr = rf−1 ◦ co.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 16 / 29



Herding Cats: fr (from-read)

r
fr−→w : read r “reads from” a write that precedes w in coherence order.

Only applies to writes at the same location.

Actually, fr is defined in terms of rf and co: fr = rf−1 ◦ co.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 16 / 29



Herding Cats: Sequential Consistency

Sequential consistency: “The result of any execution is the same as if the
operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence in
the order specified by its program.”

In the “Herding Cats” framework, this condition is stated as

acyclic(po∪ co∪ rf ∪ fr)

Most modern architectures do not satisfy this constraint. (So, SC is
not an axiom of this framework.)

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 17 / 29



Herding Cats: Sequential Consistency

Sequential consistency: “The result of any execution is the same as if the
operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence in
the order specified by its program.”

In the “Herding Cats” framework, this condition is stated as

acyclic(po∪ co∪ rf ∪ fr)

Most modern architectures do not satisfy this constraint. (So, SC is
not an axiom of this framework.)

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 17 / 29



Herding Cats: SC-Per-Location

We do not have SC in most architectures.

acyclic(po∪ co∪ rf ∪ fr)

However, we do have a similar condition, “SC-Per-Location,” in all
modern commercial architectures.

acyclic(po-loc∪ co∪ rf ∪ fr)

Note: po-loc is po, restricted to events at the same address.

SC-Per-Location is one of the four axioms of the Herding Cats framework.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 18 / 29



Herding Cats: SC-Per-Location

We do not have SC in most architectures.

acyclic(po∪ co∪ rf ∪ fr)

However, we do have a similar condition, “SC-Per-Location,” in all
modern commercial architectures.

acyclic(po-loc∪ co∪ rf ∪ fr)

Note: po-loc is po, restricted to events at the same address.

SC-Per-Location is one of the four axioms of the Herding Cats framework.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 18 / 29



Herding Cats: SC-Per-Location

We do not have SC in most architectures.

acyclic(po∪ co∪ rf ∪ fr)

However, we do have a similar condition, “SC-Per-Location,” in all
modern commercial architectures.

acyclic(po-loc∪ co∪ rf ∪ fr)

Note: po-loc is po, restricted to events at the same address.

SC-Per-Location is one of the four axioms of the Herding Cats framework.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 18 / 29



Our research

To internalize all of this material, we did the following:

Formalized these concepts in the ACL2 theorem prover
I Events, executions
I All of the axioms (including SC-Per-Location)

Used ACL2 to check a hand proof of a theorem first presented in
Alglave’s thesis

I The theorem is about the SC-Per-Location axiom
I Our ACL2 proof is simpler than the one initially presented!

Let’s look at the theorem we verified using ACL2, and then we will provide
a sketch of the proof itself.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 19 / 29



Our research

To internalize all of this material, we did the following:

Formalized these concepts in the ACL2 theorem prover
I Events, executions
I All of the axioms (including SC-Per-Location)

Used ACL2 to check a hand proof of a theorem first presented in
Alglave’s thesis

I The theorem is about the SC-Per-Location axiom
I Our ACL2 proof is simpler than the one initially presented!

Let’s look at the theorem we verified using ACL2, and then we will provide
a sketch of the proof itself.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 19 / 29



Theorem about SC-Per-Location

In her dissertation, Alglave demonstrated that SC-Per-Location was
equivalent to prohibiting the following five patterns in an execution:

In other words, if there exists a cycle in po-loc∪ co∪ rf ∪ fr, then one of
these patterns exists somewhere in the graph.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 20 / 29



Theorem about SC-Per-Location

From “Herding Cats”: Define com = co∪ rf ∪ fr, and let com+ be the
(irreflexive) transitive closure of com.

Lemma

Let E = (E, po, co, rf) be an execution. Then we have

com+ = co∪ rf ∪ fr∪(co; rf) ∪ (fr; rf).

Note: com+ actually IS irreflexive, because com is always acyclic. (We
re-proved this lemma in ACL2, although it was first proved in Alglave’s
thesis.)

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 21 / 29



Theorem about SC-Per-Location

In other words, e1
com+

−−−→ e2 iff. one of the following are true:

e1
co−→ e2

e1
rf−→ e2

e1
fr−→ e2

∃e3 s.t. e1
co−→ e3

rf−→ e2
∃e3 s.t. e1

fr−→ e3
rf−→ e2

But wait! This corresponds to the five patterns prohibited by
SC-Per-Location:

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 22 / 29



Theorem about SC-Per-Location

In other words, e1
com+

−−−→ e2 iff. one of the following are true:

e1
co−→ e2

e1
rf−→ e2

e1
fr−→ e2

∃e3 s.t. e1
co−→ e3

rf−→ e2
∃e3 s.t. e1

fr−→ e3
rf−→ e2

But wait! This corresponds to the five patterns prohibited by
SC-Per-Location:

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 22 / 29



Theorem about SC-Per-Location

This lemma suggests an alternate definition of SC-Per-Location,
corresponding to the five forbidden patterns.

Definition

An execution E = (E, po, co, rf) satisfies the property SC-Per-Location-2 if

∀x , y ∈ E, x
po-loc−−−−→ y =⇒ ¬(y

com+

−−−→ x)

i.e. no two events be related by po-loc in one direction and com+ in the
other direction.

The above definition is the same one used in the equivalence proof
Alglave’s thesis - we still have not seen the “new” aspect of our proof just
yet.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 23 / 29



Theorem about SC-Per-Location: Formal statement

Theorem

Let E be an execution. Then E satisfies SC-Per-Location if and only if E
satisfies SC-Per-Location-2. In other words:

acyclic(po-loc∪ co∪ rf ∪ fr)

if and only if

∀x , y ∈ E, x
po-loc−−−−→ y =⇒ ¬(y

com+

−−−→ x)

Although this theorem was proved in Alglave’s dissertation, we re-proved it
independently using a simpler strategy, and checked our proof in ACL2.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 24 / 29



Theorem about SC-Per-Location: Our Proof

Theorem

Let E be an execution. Then E satisfies SC-Per-Location if and only if E
satisfies SC-Per-Location-2.

Proof Sketch: It is clear that SC-Per-Location implies SC-Per-Location-2,
because all five patterns are actually cycles in po-loc∪ co∪ rf ∪ fr. To
prove the reverse implication, we proceed by contrapositive.

Assume SC-Per-Location does not hold for an execution - i.e., assume
there is a cycle in po-loc∪ co∪ rf ∪ fr. In particular, this is also a cycle in
po-loc∪ com+. We must show that there exist two events x , y ∈ E such

that x
po-loc−−−−→ y and y

com+

−−−→ x .

We demonstrate inductively that if the cycle has length k > 2, we can
always construct a shorter one. Since any cycle of length 2 has the form

x
po-loc−−−−→ y

com+

−−−→ x , we are done.

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 25 / 29



Ben’s Publications So Far

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 26 / 29



Summary

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 27 / 29



Current work

The work presented here helped inspire our current research activities.

We implemented the x86-TSO memory model directly using ACL2

We also built a simple instruction semantics using this model
I Not x86 - much simpler
I However, same underlying memory model (TSO)

We have written several simple programs on this model and proven
they satisfy certain properties

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 28 / 29



Future Work

What next?

Specify exactly which programs are DRF (data-race free) on our
x86-like model

If a program is data-race free, it only has SC behavior

This would be a huge win
I We wouldn’t have to think about weak memory anymore
I Move on to bigger and better things – proving real programs correct!

Lots of previous work on this problem to mine from - it’s just a
matter of incorporating it into the model

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 29 / 29



References

Owens et al. (2009)

x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors

TPHOLs’09 , 391 – 407.

Sewell et al. (2010)

x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors

Commun. ACM 53(7), 89 – 97.

Sorin et al. (2011)

A Primer on Memory Consistency and Cache Coherence

Morgan & Claypool

Benjamin Selfridge (UT Austin) RPE Talk May 1, 2015 30 / 29


