
19th October, 2015

Reasoning about copyData

ACL2 Seminar

Shilpi Goel

Yet Another Account of a Proof of Correctness of an x86 Machine-Code Program

/422

Quick Background

• This talk is about machine-code program verification using the ACL2
x86isa books: acl2/books/projects/x86isa

 See documentation at:
http://www.cs.utexas.edu/users/moore/acl2/manuals/
current/manual/?topic=ACL2____X86ISA

• From x86isa/README:

“These books contain the specification of x86 instruction set
architecture (ISA); we characterize x86 machine instructions and model
the instruction fetch, decode, and execute process using the ACL2
theorem-proving system. We use our x86 ISA specification to simulate
and formally verify x86 machine-code programs.”

• The book corresponding to this talk is:
 x86isa/proofs/dataCopy/dataCopy.lisp

/423

This Talk

I’m going to walk through a naïve approach of reasoning about a simple x86
machine-code program — copyData.

Why?

1. This may help someone looking for challenge programs in ACL2 —
consider using the x86isa books to verify a simple program!

2. Reasoning about memory regions (e.g., arrays) can be challenging and I
want to share a small success story.

3. Though this naïve approach works well for a first attempt to verify a
given program, I can definitely use feedback.

Note: This talk involves reading a lot of ACL2.

/424

copyData Sub-Routine

/425

copyData Sub-Routine

/425

copyData Sub-Routine

edx == n

rdi == src

rsi == dst

/425

copyData Sub-Routine

edx == n

rdi == src

rsi == dst

rax := rax * 4

/425

copyData Sub-Routine

edx == n

rdi == src

rsi == dst

rax := rax * 4
rax == m

/425

copyData Sub-Routine

loop

edx == n

rdi == src

rsi == dst

rax := rax * 4
rax == m

/426

Step 0: What Properties Do You Care About?

let
data = src[src-ptr to (src-ptr + m - 1)]
in x86
⋀ <preconditions> ⇒

dst[dst-ptr to (dst-ptr + m - 1)]
in (x86-run (program-clk m) x86)
==
data

 ⋀

src[src-ptr to (src-ptr + m - 1)]
in (x86-run (program-clk m) x86)
==
data

copy operation is
successful

source is
unmodified

/426

Step 0: What Properties Do You Care About?

let
data = src[src-ptr to (src-ptr + m - 1)]
in x86
⋀ <preconditions> ⇒

dst[dst-ptr to (dst-ptr + m - 1)]
in (x86-run (program-clk m) x86)
==
data

 ⋀

src[src-ptr to (src-ptr + m - 1)]
in (x86-run (program-clk m) x86)
==
data

copy operation is
successful

source is
unmodified

/427

Step 1: Setup

Include x86isa + other helper books.

/428

Step 1: Setup

Introduce the program.

/429

Step 2: Define Clock Functions

(defun loop-clk-base () 6)
(defun loop-clk-recur () 6)

(defun loop-clk (m)
 (if (signed-byte-p 64 m)
 (let ((new-m (loghead 64 (+ #xfffffffffffffffc m))))
 (if (<= m 4)
 (loop-clk-base)
 (clk+ (loop-clk-recur) (loop-clk new-m))))
 0))

Showing only the loop clock function here…

/4210

Step 3: Define Abstractions

Source Array:

(defun-nx source-bytes (i src-ptr x86)
 (mv-nth 1 (rb (create-canonical-address-list
 i
 (+ (- i) src-ptr))
 :x x86)))

Read i bytes from addresses:
(src-ptr - i), (src-ptr - i + 1), … , (src-ptr - 1).

/4210

Step 3: Define Abstractions

Source Array:

(defun-nx source-bytes (i src-ptr x86)
 (mv-nth 1 (rb (create-canonical-address-list
 i
 (+ (- i) src-ptr))
 :x x86)))

Read i bytes from addresses:
(src-ptr - i), (src-ptr - i + 1), … , (src-ptr - 1).

Later, I’ll talk about why this definition doesn’t do the “natural” thing, i.e.,
read i bytes from src-ptr to (src-ptr + i - 1).

Spoiler:
It’s a “I-like-it-that-way” decision, not so much a technical one.

/4211

Step 3: Define Abstractions

Destination Array: same kind of definition as source-bytes

(defun-nx destination-bytes (j dst-ptr x86)
 (mv-nth 1 (rb (create-canonical-address-list
 j
 (+ (- j) dst-ptr))
 :x x86)))

Read j bytes from addresses:
(dst-ptr - j), (dst-ptr - j + 1), … , (dst-ptr - 1).

/4212

Step 5: Effect Theorems

(defthm effects-copyData-loop
 (implies
 (loop-preconditions k m addr src-ptr dst-ptr x86)
 (equal (x86-run (loop-clk m) x86)
 ???)))

What’s the effect of the loop on the x86 state?

/4213

Step 4: Figure Out the Pre-Conditions

I think that this is the hardest step of them all.
Here, we need to think about the loop invariant too.

/4213

Step 4: Figure Out the Pre-Conditions

I think that this is the hardest step of them all.
Here, we need to think about the loop invariant too.

Let’s recall how the copyData loop works.

In every iteration:

1. 4 bytes from the src are copied to the dst.

2. src-ptr and dst-ptr are incremented by 4.

3. Number of bytes to be copied (m) is decremented by 4 (using wrap-
around addition).

4. If m is zero, we jump out of the loop. Otherwise, we iterate.

/4214

Step 4: Figure Out the Pre-Conditions

Important:
Every iteration of the loop modifies a different set of memory locations.

/4214

Step 4: Figure Out the Pre-Conditions

Important:
Every iteration of the loop modifies a different set of memory locations.

m:
number of bytes to be copied
decreases by 4 in every iteration

/4214

Step 4: Figure Out the Pre-Conditions

Important:
Every iteration of the loop modifies a different set of memory locations.

m:
number of bytes to be copied
decreases by 4 in every iteration

k:
number of bytes already copied
increases by 4 in every iteration

(m + k):
Remains constant in every iteration

/4214

Step 4: Figure Out the Pre-Conditions

Important:
Every iteration of the loop modifies a different set of memory locations.

Initial value: 0

m:
number of bytes to be copied
decreases by 4 in every iteration

k:
number of bytes already copied
increases by 4 in every iteration

(m + k):
Remains constant in every iteration

/4215

Step 4: Figure Out the Pre-Conditions

;; Initial x86 state is well-formed.
(x86p x86)
(xr :programmer-level-mode 0 x86)
(equal (xr :ms 0 x86) nil)
(equal (xr :fault 0 x86) nil)

/4215

Step 4: Figure Out the Pre-Conditions

;; Initial x86 state is well-formed.
(x86p x86)
(xr :programmer-level-mode 0 x86)
(equal (xr :ms 0 x86) nil)
(equal (xr :fault 0 x86) nil)

;; For convenience, name some parts of the state.
(equal (xr :rgf *rdi* x86) src-ptr)
(equal (xr :rgf *rsi* x86) dst-ptr)
;; m = Number of bytes to be copied
(equal (xr :rgf *rax* x86) m)

/4215

Step 4: Figure Out the Pre-Conditions

;; Initial x86 state is well-formed.
(x86p x86)
(xr :programmer-level-mode 0 x86)
(equal (xr :ms 0 x86) nil)
(equal (xr :fault 0 x86) nil)

;; For convenience, name some parts of the state.
(equal (xr :rgf *rdi* x86) src-ptr)
(equal (xr :rgf *rsi* x86) dst-ptr)
;; m = Number of bytes to be copied
(equal (xr :rgf *rax* x86) m)

(unsigned-byte-p 33 m)
(equal (mod m 4) 0)
(posp m)
;; k = Number of bytes already copied
(unsigned-byte-p 33 k)
(equal (mod k 4) 0)
(unsigned-byte-p 33 (+ m k))

/4216

Step 4: Figure Out the Pre-Conditions

;; Program is located at address “addr”.
(program-at
 (create-canonical-address-list (len *copyData*) addr)
 copyData x86)

;; Poised to execute first instruction of the loop:
(equal addr (+ -16 (xr :rip 0 x86)))

;; All program addresses are canonical.
(canonical-address-p addr)
(canonical-address-p (+ (len *copyData*) addr))

/4217

Step 4: Figure Out the Pre-Conditions

;; All the destination addresses are canonical.
(canonical-address-p (+ (- k) dst-ptr))
(canonical-address-p (+ m dst-ptr))

;; All the source addresses are canonical.
(canonical-address-p (+ (- k) src-ptr))
(canonical-address-p (+ m src-ptr))

/4218

Step 4: Figure Out the Pre-Conditions

;; Memory locations of interest are disjoint.

(disjoint-p ;; Program addresses and destination addresses
 (create-canonical-address-list (len *copyData*) addr)
 (create-canonical-address-list (+ m k)
 (+ (- k) dst-addr)))

/4218

Step 4: Figure Out the Pre-Conditions

;; Memory locations of interest are disjoint.

(disjoint-p ;; Program addresses and destination addresses
 (create-canonical-address-list (len *copyData*) addr)
 (create-canonical-address-list (+ m k)
 (+ (- k) dst-addr)))

(disjoint-p ;; Return addresses and destination addresses
 (create-canonical-address-list 8
 (+ 8 (xr :rgf *rsp* x86)))
 (create-canonical-address-list (+ m k)
 (+ (- k) dst-addr)))

/4218

Step 4: Figure Out the Pre-Conditions

;; Memory locations of interest are disjoint.

(disjoint-p ;; Program addresses and destination addresses
 (create-canonical-address-list (len *copyData*) addr)
 (create-canonical-address-list (+ m k)
 (+ (- k) dst-addr)))

(disjoint-p ;; Return addresses and destination addresses
 (create-canonical-address-list 8
 (+ 8 (xr :rgf *rsp* x86)))
 (create-canonical-address-list (+ m k)
 (+ (- k) dst-addr)))

(disjoint-p ;; Source addresses and destination addresses
 (create-canonical-address-list (+ m k)
 (+ (- k) src-addr))
 (create-canonical-address-list (+ m k)
 (+ (- k) dst-addr)))

/4219

Step 4: Figure Out the Pre-Conditions

;; Values copied in the previous iterations
;; of the loop are unaltered.

;; If k > 0:

;; dst[(dst-ptr - k) to (dst-ptr - 1)] ==
;; src[(src-ptr - k) to (src-ptr - 1)]

;; If k == 0: trivially true.

(equal (destination-bytes k dst-ptr x86)
 (source-bytes k src-ptr x86))

/4220

Step 4: Figure Out the Pre-Conditions

;; All the stack addresses are canonical.
(canonical-address-p (xr :rgf *rsp* x86))
(canonical-address-p (+ 8 (xr :rgf *rsp* x86)))

;; Return address of the copyData is canonical.
(canonical-address-p
 (logext
 64
 (combine-bytes
 (mv-nth 1
 (rb (create-canonical-address-list
 8 (+ 8 (xr :rgf *rsp* x86)))
 :r x86)))))

/4221

Step 5: Effect Theorems

(defthm effects-copyData-loop
 (implies
 (loop-preconditions k m addr src-ptr dst-ptr x86)
 (equal (x86-run (loop-clk m) x86)
 ???)))

/4221

Step 5: Effect Theorems

(defthm effects-copyData-loop
 (implies
 (loop-preconditions k m addr src-ptr dst-ptr x86)
 (equal (x86-run (loop-clk m) x86)
 ???)))

(defthmd effects-copyData-loop-base
 (implies
 (and (equal m 4)
 (loop-preconditions k m addr src-ptr dst-ptr x86))
 (equal (x86-run (loop-clk-base) x86)
 ???)))

/4221

Step 5: Effect Theorems

(defthm effects-copyData-loop
 (implies
 (loop-preconditions k m addr src-ptr dst-ptr x86)
 (equal (x86-run (loop-clk m) x86)
 ???)))

(defthmd effects-copyData-loop-base
 (implies
 (and (equal m 4)
 (loop-preconditions k m addr src-ptr dst-ptr x86))
 (equal (x86-run (loop-clk-base) x86)
 ???)))

(defthmd effects-copyData-loop-recur
 (implies
 (and (< 4 m)
 (loop-preconditions k m addr src-ptr dst-ptr x86))
 (equal (x86-run (loop-clk-recur) x86)
 ???)))

/4222

Step 5: Effect Theorems: Loop’s Last Iteration
(defthmd effects-copyData-loop-base
 (implies
 (and (equal m 4)
 (loop-preconditions k m addr src-ptr dst-ptr x86))
 (equal (x86-run (loop-clk-base) x86)
 (XW
 :RGF *RAX* 0

 (MV-NTH
 1
 (WB
 (CREATE-ADDR-BYTES-ALIST
 (CREATE-CANONICAL-ADDRESS-LIST
 4 DST-PTR)
 (MV-NTH 1
 (RB
 (CREATE-CANONICAL-ADDRESS-LIST
 4 SRC-PTR)
 :X X86))))
 X86)))))

/4223

Step 5: Effect Theorems: dst in the Last Iteration

(defthm loop-base-destination-bytes-projection

 ;; dst[(+ -k dst-ptr) to (dst-ptr + 3)]
 ;; in (x86-run (loop-clk-base) x86) ==

 ;; src[(+ -k src-ptr) to (src-ptr + 3)]
 ;; in x86

 (implies
 (and (loop-preconditions k m addr src-ptr dst-ptr x86)
 (equal m 4))
 (equal (destination-bytes (+ 4 k) (+ 4 dst-ptr)
 (x86-run (loop-clk-base) x86))
 (source-bytes (+ 4 k) (+ 4 src-ptr) x86))))

/4224

Step 5: Effect Theorems: A Loop Iteration (not the last)

(defthmd effects-copyData-loop-recur
 (implies
 (and (< 4 m)
 (loop-preconditions k m addr src-ptr dst-ptr x86))
 (equal
 (x86-run (loop-clk-recur) x86)
 (XW
 :RGF *RAX*
 (LOGHEAD 64 (+ #XFFFFFFFFFFFFFFFC M))
 ...
 (MV-NTH
 1
 (WB
 (CREATE-ADDR-BYTES-ALIST
 (CREATE-CANONICAL-ADDRESS-LIST 4 DST-PTR)
 (MV-NTH 1 (RB (CREATE-CANONICAL-ADDRESS-LIST
 4 SRC-PTR)
 :X X86)))
 X86))))))

/4225

Step 5: Effect Theorems: dst in an Iteration (not the last)

(defthm loop-recur-destination-bytes-projection

 ;; dst[(+ -k dst-ptr) to (dst-ptr + 3)]
 ;; in (x86-run (loop-clk-recur) x86) ==

 ;; src[(+ -k src-ptr) to (src-ptr + 3)]
 ;; in x86

 (implies
 (and (< 4 m)
 (loop-preconditions k m addr src-ptr dst-ptr x86))
 (equal (destination-bytes (+ 4 k) (+ 4 dst-ptr)
 (x86-run (loop-clk-recur) x86))
 (source-bytes (+ 4 k) (+ 4 src-ptr) x86))))

/4226

Step 5: Effect Theorems

(defthm effects-copyData-loop
 (implies
 (loop-preconditions k m ptr src-ptr dst-ptr x86)
 (equal (x86-run (loop-clk m) x86)
 (loop-state k m src-ptr dst-ptr x86))))

I like to think about x86 states, not clocks.

Also, induction scheme suggested by loop-state is more suitable than the
one by loop-clk.

Characterizing the state after the loop has run to completion:

/4227

Step 5: Effect Theorems

(defun-nx loop-state (k m src-ptr dst-ptr x86)

 (if (signed-byte-p 64 m)

 (if (<= m 4)

 (x86-run (loop-clk-base) x86)

 (b* ((new-m
 (loghead 64 (+ #xfffffffffffffffc m)))
 (new-k (+ 4 k))
 (new-src-ptr (+ 4 src-ptr))
 (new-dst-ptr (+ 4 dst-ptr))
 (x86 (x86-run (loop-clk-recur) x86)))
 (loop-state new-k new-m
 new-src-ptr new-dst-ptr
 x86)))
 x86))

/4228

Step 5: Effect Theorems: Proving effects-copyData-loop

(AND (IMPLIES (NOT (SIGNED-BYTE-P 64 M))
 (:P ADDR DST-ADDR K M SRC-ADDR X86))

 (IMPLIES (AND (SIGNED-BYTE-P 64 M)
 (< 4 M)
 (:P ADDR
 (+ 4 DST-ADDR)
 (+ 4 K)
 (LOGHEAD 64 (+ 18446744073709551612 M))
 (+ 4 SRC-ADDR)
 (X86-RUN (LOOP-CLK-RECUR) X86)))
 (:P ADDR DST-ADDR K M SRC-ADDR X86))

 (IMPLIES (AND (SIGNED-BYTE-P 64 M) (<= M 4))
 (:P ADDR DST-ADDR K M SRC-ADDR X86)))

Induction Scheme:

/4229

Step 5: Effect Theorems: Proving effects-copyData-loop

Subgoal *1/3
(IMPLIES (NOT (SIGNED-BYTE-P 64 M))
 (IMPLIES
 (LOOP-PRECONDITIONS K M ADDR SRC-ADDR DST-ADDR X86)
 (EQUAL (X86-RUN (LOOP-CLK M) X86)
 (LOOP-STATE K M SRC-ADDR DST-ADDR X86))))

/4230

Step 5: Effect Theorems: Proving effects-copyData-loop

Subgoal *1/2
(IMPLIES
 (AND
 (SIGNED-BYTE-P 64 M)
 (< 4 M)
 (IMPLIES
 (LOOP-PRECONDITIONS (+ 4 K)
 (LOGHEAD 64 (+ 18446744073709551612 M))
 ADDR
 (+ 4 SRC-ADDR)
 (+ 4 DST-ADDR)
 (X86-RUN (LOOP-CLK-RECUR) X86))
 (EQUAL (X86-RUN (LOOP-CLK (LOGHEAD 64 (+ 18446744073709551612 M)))
 (X86-RUN (LOOP-CLK-RECUR) X86))
 (LOOP-STATE (+ 4 K)
 (LOGHEAD 64 (+ 18446744073709551612 M))
 (+ 4 SRC-ADDR)
 (+ 4 DST-ADDR)
 (X86-RUN (LOOP-CLK-RECUR) X86)))))
 (IMPLIES
 (LOOP-PRECONDITIONS K M ADDR SRC-ADDR DST-ADDR X86)
 (EQUAL (X86-RUN (LOOP-CLK M) X86)
 (LOOP-STATE K M SRC-ADDR DST-ADDR X86))))

/4231

(defthm loop-recur-implies-loop-preconditions
 (implies
 (and (< 4 m)
 (loop-preconditions k m addr src-ptr dst-ptr x86))
 (loop-preconditions (+ 4 k)
 (loghead 64 (+ #xfffffffffffffffc m))
 addr
 (+ 4 src-ptr)
 (+ 4 dst-ptr)
 (x86-run (loop-clk-recur) x86))))

Step 5: Effect Theorems: Proving effects-copyData-loop

To discharge Subgoal *1/2:

/4232

Step 5: Effect Theorems: Proving effects-copyData-loop

Subgoal *1/1
(IMPLIES (AND (SIGNED-BYTE-P 64 M) (<= M 4))
 (IMPLIES
 (LOOP-PRECONDITIONS K M ADDR SRC-ADDR DST-ADDR X86)
 (EQUAL (X86-RUN (LOOP-CLK M) X86)
 (LOOP-STATE K M SRC-ADDR DST-ADDR X86))))

/4233

Step 5: Effect Theorems

(defthm effects-copyData-loop
 (implies
 (loop-preconditions k m ptr src-ptr dst-ptr x86)
 (equal (x86-run (loop-clk m) x86)
 (loop-state k m src-ptr dst-ptr x86))))

Characterizing the state after the loop has run to completion:

Q.E.D.

/4234

Step 5: Effect Theorems

(defthmd destination-array-and-loop-state

 ;; dst[(+ -k dst-ptr) to (dst-ptr + m - 1)]
 ;; in (loop-state k m src-ptr dst-ptr x86) ==

 ;; src[(+ -k src-ptr) to (src-ptr + m - 1)]
 ;; in x86

 (implies
 (and (loop-preconditions k m addr src-ptr dst-ptr x86)
 (natp k))
 (equal
 (destination-bytes
 (+ k m)
 (+ m dst-ptr)
 (loop-state k m src-ptr dst-ptr x86))
 (source-bytes (+ k m) (+ m src-ptr) x86))))

/4235

Step 5: Effect Theorems

(defthm destination-array-and-x86-state-after-loop

 ;; dst[(+ -k dst-ptr) to (dst-ptr + m - 1)]
 ;; in (x86-run (loop-clk m) x86) ==

 ;; src[(+ -k src-ptr) to (src-ptr + m - 1)]
 ;; in x86

 (implies
 (and (loop-preconditions k m addr src-ptr dst-ptr x86)
 (natp k))
 (equal
 (destination-bytes
 (+ k m)
 (+ m dst-ptr)
 (x86-run (loop-clk m) x86))
 (source-bytes (+ k m) (+ m src-ptr) x86))))

/4236

Step 6: Composition and Other Final Touches

loop-clk

/4236

Step 6: Composition and Other Final Touches

loop-clk

pre-clk

/4236

Step 6: Composition and Other Final Touches

loop-clk

pre-clk

cl
k
=
pr
e-
cl
k
+
lo
op
-c
lk

/4236

Step 6: Composition and Other Final Touches

loop-clk

pre-clk

cl
k
=
pr
e-
cl
k
+
lo
op
-c
lk

post-clk

/4236

Step 6: Composition and Other Final Touches

loop-clk

pre-clk

cl
k
=
pr
e-
cl
k
+
lo
op
-c
lk

post-clkpr
og
ra
m-
cl
k
=
cl
k
+
po
st
-c
lk

/4237

Step 6: Composition and Other Final Touches

(defthm preconditions-implies-loop-preconditions
 (implies
 (and (preconditions n addr x86)
 (not (zp n))
 (equal m (ash n 2)))
 (loop-preconditions
 0 m addr
 (xr :rgf *rdi* x86) ;; src-ptr
 (xr :rgf *rsi* x86) ;; dst-ptr
 (x86-run (pre-clk n) x86))))

/4237

Step 6: Composition and Other Final Touches

(defthm preconditions-implies-loop-preconditions
 (implies
 (and (preconditions n addr x86)
 (not (zp n))
 (equal m (ash n 2)))
 (loop-preconditions
 0 m addr
 (xr :rgf *rdi* x86) ;; src-ptr
 (xr :rgf *rsi* x86) ;; dst-ptr
 (x86-run (pre-clk n) x86))))

/4237

Step 6: Composition and Other Final Touches

(defthm preconditions-implies-loop-preconditions
 (implies
 (and (preconditions n addr x86)
 (not (zp n))
 (equal m (ash n 2)))
 (loop-preconditions
 0 m addr
 (xr :rgf *rdi* x86) ;; src-ptr
 (xr :rgf *rsi* x86) ;; dst-ptr
 (x86-run (pre-clk n) x86))))

loop-
preconditions are
the post-conditions
for the 7 instructions
preceding the loop.

/4238

Step 6: Composition and Other Final Touches

(defthm clk-copies-m-bytes-from-source-to-destination
 (implies
 (and (preconditions n addr x86)
 (not (zp n))
 (equal m (ash n 2)))
 (equal
 (destination-bytes
 m
 (+ m (xr :rgf *rsi* x86))
 (x86-run (clk n) x86))
 (source-bytes m (+ m (xr :rgf *rdi* x86)) x86))))

By transitivity:

/4239

Step 6: Composition and Other Final Touches

And do more compositions to get the final theorem about a successful copy:

(defthm destination-array-is-a-copy-of-the-source-array
 (implies
 (and (preconditions n addr x86)
 (equal m (ash n 2)))
 (equal
 (destination-bytes
 m
 (+ m (xr :rgf *rsi* x86))
 (x86-run (program-clk n) x86))
 (source-bytes
 m
 (+ m (xr :rgf *rdi* x86))
 x86))))

/4240

Conclusion

And… we’re done. Whew.

/4240

Conclusion

And… we’re done. Whew.

Wait. Where’s the specification function of this program?

copyData is a “state-modification” program. I didn’t choose to write an
explicit specification function.

/4240

Conclusion

And… we’re done. Whew.

Wait. Where’s the specification function of this program?

copyData is a “state-modification” program. I didn’t choose to write an
explicit specification function.

Verification of other programs that do some computation (e.g., a factorial
program) would add at least another step to this process — namely, writing
formal specifications.

19th October, 2015

Reasoning about copyData

ACL2 Seminar

Shilpi Goel

Yet Another Account of a Proof of Correctness of an x86 Machine-Code Program

BTW… My Proposed Dissertation Project

datasrc

Linear
Memory

datadst

Verification Objective:
After a successful copy, src and dst contain
data.

Implementation:
Include the copy-on-write technique:
src and dst can be mapped to the same physical
memory location phy.

‣ System calls
‣ Page mapping
‣ Privileges
‣ Context Switches

dataphy

Physical
Memory

Formal Analysis of an Optimized Data-Copy Program

Programmer
-level mode

System-
level mode

Specification:
Copy data from linear memory location src to
disjoint linear memory location dst.

BTW… My Proposed Dissertation Project

datasrc

Linear
Memory

datadst

Verification Objective:
After a successful copy, src and dst contain
data.

Implementation:
Include the copy-on-write technique:
src and dst can be mapped to the same physical
memory location phy.

‣ System calls
‣ Page mapping
‣ Privileges
‣ Context Switches

dataphy

Physical
Memory

Formal Analysis of an Optimized Data-Copy Program

Programmer
-level mode

System-
level mode

Specification:
Copy data from linear memory location src to
disjoint linear memory location dst.

