
Reducing Fair Stuttering Refinement of Transaction
Systems

Rob Sumners

Advanced Micro Devices

robert.sumners@amd.com

November 16th, 2015

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 1 / 30

Overview

1 Motivations
Specifications of Reactive Systems
Verifying State Transition Systems
Targeting Transaction Systems

2 Fair Stuttering Refinements

3 Transaction Systems
Defining Transaction Systems

4 Examples
Example Specification: Shared Memory Specification
Example Implementation: Cache Coherence Implementation

5 Reducing Fair Stuttering Refinement

6 Finite State Checker

7 Future Work

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 2 / 30

Specifications of Reactive Systems

Reactive Systems refer to any system which has an ongoing interaction
with some environment.. and as such their specification is defined as
properties of infinite sequences of behaviors as opposed to singular results.
Specifications of reactive systems can thus be factored into two types of
properties:

Safety Properties

Safety properties can only be refuted by some finite prefix of an infinite
run.. (i.e. nothing bad happens)

Progress Properties

Progress properties can only be refuted by some infinite suffix of a run..
(i.e. something good always eventually happens)

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 3 / 30

Verifying State Transition Systems

In the case of State transition systems (defined by an initial state predicate
(init x) and a next-state transition relation (next x y)), property
verification entails:

Verifying Safety Properties

Safety properties can generally be verified by proving that the not bad
states are an invariant of the system. For finite state systems, one can do
an exhaustive search of the reachable states to determine if any bad states
are reached.

Verifying Progress Properties

Progress properties require showing that no infinite sequences of not good
states can be reached. Yuck.. For finite state systems, one must search if
any not good cycles are reachable.. alternatively, add a progress measure
to transfer the progress property to a safety property.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 4 / 30

Targeting Transaction Systems

Transaction Systems

For the fun of it, we will focus on asynchronous transaction sytems with
the following characteristics..

the state of a transaction system is simply a list of transaction states

asynchronous update: transaction systems update one transaction
state at a time

each transaction starts in an initial state and eventually reaches a
done state

for simplicity, we will assume that no transactions are deleted or
spawned.. but this is not limiting

Transactions in these systems are usually fairly simple in isolation, but the
complexity arises from how they interact and interleave their computation..
all types of examples.. but how do we allow transactions to interact?

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 5 / 30

Specification of Transaction Systems

For an implementation transaction system, we will assume the definition of
a much simpler specification transaction system and prove that the
implementation is a fair stuttering refinement of the specification.. but
what the heck does that mean?

Well.. in a bit..

We also want to define transaction systems in a way which affords an
effective procedure/algorithm for checking for fair stuttering refinements..
more on that later.. in a bit..

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 6 / 30

Refinement and Stuttering Refinement

Refinement

An implementation is a refinement of a specification if every run of the
implementation can be matched by a run of the specification

Stuttering Refinement

An implementation is a stuttering refinement of a specification if every run
of the implementation can be matched by a run of the specification with
an allotment for finite stutter in the implementation

...but this does not guarantee fairness...

Fair run

A run of a transaction system is fair if at all times, for every transaction in
the state, there is a future time where the transaction will be selected to
try to take its next step

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 7 / 30

Fair Stuttering Refinement

Fair Stuttering Refinement

An implementation is a fair stuttering refinement of a specification if every
fair run of the implementation can be matched by a fair run of the
specification with an allotment for finite stuttering on the implementation
side

It is a nice, compact, and intuitive way to express safety and progress
properties we would like to prove and has the following assurances:

Implementation transactions are verified to progress in a way
consistent with the specification transactions

Implementation transactions are verified to never deadlock or starve
and always make progress to completion

Implementation transactions can still hide spatial and temporal details
of the implementation

Fair Stuttering refinement is also transitive.. so we can chain refinements..
more on that too..

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 8 / 30

How Do Transactions Interact?

There are many ways in which transactions can potentially interact:

shared memory or state

message passing

locks, mutexes, etc.

spawning and joining..

... many many possible ways

But unfortunately, all of these standard means for transaction interaction
introduce the potential for strong state correlation between transactions as
they run and this makes writing efficient procedures and algorithms far
more difficult.

So, we allow a transaction to only block another transaction (more
precisely, block certain transitions of the other transaction) and this is the
only interaction we allow.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 9 / 30

Defining Transaction Systems
A transaction system is defined by two predicates on transaction states
(init x) and (next x y c k).. (init x) simply tests if x is an initial
transaction state..

Transaction next state relations

The predicate (next x y c k) returns T when a transition exists from x

to y with a valid clock c and the transition is not blocked by k

(defun done (a) (and (exists (x c k) (next x a c k))

(not (exists (y c k) (next a y c k)))))

(defun next-total (x y c k) (or (next x y c k) (and (done x) (init y))))

(defun next-all (x y c l) (forall (i) (next-total x y c (nth i l))))

(defun good-clk (c l) (forall (i) (all-clks-< (nth i l) c)))

(defun n-c (x y l) (exists (c) (and (good-clk c l) (next-all x y c l))))

(defun next-trans (x y l) (if (exists (z) (n-c x z l)) (n-c x y l) (= x y)))

(defun next-sys (l m i) (and (equal-lists-except-index l m i)

(next-trans (nth l i) (nth m i) l)))

(defun init-sys (l) (forall (i) (init (nth i l))))

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 10 / 30

Key Benefit: State Smoothness Property

A key property of this style of transaction systems is the following “State
Smoothness” property:

State Smoothness Property

For any list of transactions L, if any sublist of L is not reachable, then L is
not reachable

This is very important in reducing the scope of our searches for failures,
but it comes at the price of requiring a certain discipline in the definition of
transactions and certain sacrifices... namely, any tightly coupled programs
or processes will need to be merged into larger transactions.. Yikes?

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 11 / 30

More on Clocks and Blocks...

Clocks are natural numbers which are guaranteed to be greater than any
existing clock value stored in a field of any transaction state. Clocks can
be copied into the transaction state and then used later for the sake of
unique indentification or to block based on ordering of transactions.

Transaction blocking could represent a variety of real effects on
transaction execution from protocol implementation to resource
availability. But transaction blocking can also be selective (only blocking
some transaction updates) and this can be used to communicate
information.. although in a limited way.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 12 / 30

More Implications and Limitations

There are (at least) two big limitations in how we define transactions.. no
direct communication between transactions and no shared storage.

Actually, because there are no stores in general and all transactions must
make progress to completion, the issue is even more dire.. there is no way
to hold or store data indefinitely. As we will see in the simple shared
memory specification, the last value written to an address may just
eventually flutter away on the wind..

Some of this is alleviated through specification.. make the lack of
persistence part of the specification but in a manner which is clear so that
there is no chance of hiding real failures in the implementation.

In general, this is not suited for all systems and definitions.. best suited for
systems with small transactions which have a lot of protocol and resouce
blocks as the main concern of design complexity.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 13 / 30

Example Specification: Shared Memory 1
For our shared memory specification, every transaction is a read or write
with a source, address, and data, and goes through the following states:

idle — initial state with no instruction to perform

launch — instruction received and ready to begin processing

precom — instruction has arrived at ordering point.. waiting to
commit

commit — the instruction has been chosen to be performed next for a
given address

visible — the effects of the instruction are now “visible” to others

retire — the instruction has been retired (along with its effects)

There is no shared state and no shared memory — so, the current state of
memory is defined for each address by the last transaction for that address
to become visible.. but note that due to our limitations on transactions..
there is no way to KEEP the last visible state around so your last written
value to an address may just vanish..

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 14 / 30

Example Specification: Shared Memory 2
(defun mem-next (x y c k)

(and (cond ((is-idle x) (is-launch y)) ;; state update

((is-launch x) (is-precom y))

((is-precom x) (is-commit y))

((is-commit x) (is-visible y))

((is-visible x) (is-retire y)))

(= (l-clk y) (if (is-launch y) c (l-clk x))) ;; launch clock update

(= (p-clk y) (if (is-precom y) c (p-clk x))) ;; precom clock update

(implies (or (is-write-cmd x) (is-visible x) (is-commit x))

(= (data x) (data y))) ;; when data remains the same

(= (list (cmd x) (src x) (addr x)) ;; other fields are static

(list (cmd y) (src y) (addr y)))

(cond ((is-launch x) ;; blocks by other reads/writes

(implies (and (is-launch k) ;; memory ordering requirements

(= (src x) (src k))

(or (= (addr x) (addr k))

(= (cmd x) (cmd k))))

(<= (l-clk x) (l-clk k))))

((is-precom x)

(cond ((is-precom k) ;; must pick in order to be fair

(implies (or (= (src x) (src k))

(= (addr x) (addr k)))

(<= (p-clk x) (p-clk k))))

((is-commit k) ;; can only commit one at a time

(/= (addr x) (addr k)))

((is-visible k) ;; copy data from last visible

(implies (and (is-read-cmd x)

(= (addr x) (addr k)))

(= (data k) (data y))))

(t t)))

((is-commit x) ;; ensure that only one is visible

(implies (is-visible k) (/= (addr x) (addr k))))

(t t))))

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 15 / 30

Example Implementation: Cache Coherence 1
Yet another version of the German Cache Coherence protocol with the
following transaction components and updates:

instruction state similar to the shared memory but updated relative to
cache actions

local cache state in idle/valid/invalid and carries addr and data

req channel state in send/transit/delivered and carries cmd/src/addr

inv channel state in send/transit/delivered and carries addr

iack channel state in send/transit/delivered and carries addr/data

grant channel state in send/transit/delivered and carries addr/data

host-mem state in idle/received/pick/wait-rsp/send and holds
src/addr/data

Execution first checks local cache state to see if read/write addr is already
there.. if not, send a req. to host-mem, and then wait for the grant. The
host-mem will check directory state to determine if it can grant or must
first invalidate.. sends out invalidate requests, waits for acks, and then
sends the grant.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 16 / 30

Example Implementation: Cache Coherence 2

The German protocol implementation updates the shared memory
instruction state at the following points:

launch — updates immediately on instruction retrieval..

precom — updates either on availability in local cache or on arrival to
host-mem

commit — updates either on availability in local cache or when all
iacks have been received

visible — updates on availability in local cache

retire — when the instruction completes and the cache is cleared

For reference, the common German fail case of not ordering Invalidate and
Grants from host-mem in the same channel will result in a fail of the check
that blocks are preserved in the spec... (i.e. the block guarding the entry
to visible state breaks if we can reach a state where two caches have been
granted exclusive access).

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 17 / 30

Reducing Fair Stuttering Refinement 1
Goal: reduce proof of fair stuttering refinement of two transaction systems
to a series of smaller checks on a bounded number of transactions

init-done-maps-to-init-done

init/done transaction states in the implementation map to init/done
transaction states in the specification

next-stutter-match

every implementation transaction step is matched by a specification
transaction step or stutters

next-no-unbounded-stutter

every stuttering transaction sequence is bounded (e.g. no cycles) between
matching states

block-preserved-at-match-steps

any block in the specification must be matched by a block in the
implementation at any step in the implementation which must be matched
in the specificationRob Sumners (AMD) Transaction Progress Checking November 16th, 2015 18 / 30

Reducing Fair Stuttering Refinement 2
no-reachable-block-cycles

we cannot reach any set of transaction states which are mutually
blocking.. no reachable deadlocks

no-reachable-starvation

every minimum blocking transaction set for a blocked trans. state cannot
be reached or cannot complete to done

well-founded-trans-refinement

well-founded-trans-refinement is the conjunction of these 7
properties

;; abusing notation here as spec and impl are functions..

(implies (and (well-formed-system-p spec)

(well-formed-system-p impl))

(iff (well-founded-trans-refinement spec impl)

(fair-stuttering-refinement spec impl)))
Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 19 / 30

Reducing Fair Stuttering Refinement 3

“Soundness” overview

From the first five properties, we can ensure a stuttering refinement by
proving that the specification transaction will always eventually match..
Define a measure on the implementation states based on
block-dependence being acyclic (e.g. there is always one state which is
unblocked). In order to ensure fairness, we need to define a measure for
each transaction id which exists due to the no-reachable-starvation
property.. this is a bit more complicated but inuitively, progress is ensured
because some transaction which is blocking must be able to make progress
and must then eventually be blocked itself.

“Completeness” overview

Each of the properties failing leads directly to a minimal run of the
implementation system which cannot be matched by the specification or
gets stuck in an infinite loop or causes a transaction to be blocked every
time it tries to take a step.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 20 / 30

A Checker for Finite State Transactions 1

User provides a list systems of system names. For each system name
’sys in systems, the user must define predicates (sys-init x) and
(sys-next x y c k) in ACL2 prior to executing the checker.
The checker then performs the following steps for systems:

typecheck — fixpoint iteration through system functions
accumulating type information.. fail on inconsistencies.

bddorder — fixpoint iteration again through system functions
accumulating ordering information.. build final order.

translate — translate the system functions to BDDs using the
BDDorder and type information from previous steps.

check-wftr — perform the well-founded-trans-refinement

checks between each system starting from specification.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 21 / 30

A Checker for Finite State Transactions 2
Several things to note about typecheck, bddorder, and translate

typecheck passing will ensure that the system functions have effective
finite domain (bounded number of cars,cdrs,gets and limited
operations on atoms).
types computed for a more concrete system must be a “subtype” of
the type computed for the more abstract systems.. this allows an
implicit mapping of states by dropping the state components in the
concrete system which are not relevant at the abstract level and
allows us to use one transaction type for all systems.
bddorder fixpoint iteration is computed across all system functions...
needed so we can use one bddordering for transactions for all systems.
bddorder produces strong equivalence classes between transaction
fields that need interleaving as well as precedences which determine
the final layout.

We interleave these BDD transaction variables across multiple transaction
IDs.. so if we have transaction ordering BV0, BV1, BV2, ... then the final
order will be tr0.BV0, tr1.BV0, ..., tr0.BV1, tr0.BV1, ...

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 22 / 30

A Checker for Finite State Transactions 3

In regard to clocks.. Clocks are unbounded natural numbers and can be
copied into updated transaction states and thus break the finite domain
assumption... But, as part of typecheck, we ensure that clocks can only be
equated or linearly compared with other clocks with no constants.. This
means that we can use a finite set of natural values for clocks as long as
we have more values than variables and we bound every state set
computation to not include more variables than possible clock values.
moving on...

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 23 / 30

A Checker for Finite State Transactions 4
Checking WFTR proceeds in checking the requisite properties of each
system with respect to the next system in the chain. The first several
properties are fairly straightforward checks of building the appropriate
BDD and testing whether it is empty or not. For the more involved
checks, we compute a multi-transaction BDD and then use a backwards
traversal to determine if the set is reachable:

block-preserved-at-match-steps — check reach for 2-trans set
(x k) where we can take a step from x (not blocked by k) which
must be matched in the spec. and is blocked by (map k)

no-reachable-starvation — check reach for n+1-trans set (x k0

... kn) where x is minimally blocked by the ki. x must remain
fixed in this case. if backward reach finds a path, then check forward
reach to done states.
well-founded-trans-refinement — check reach for incrementally
larger trans-sets (x0 ... xn) where each x in the set is blocked by
some subset and there is at least one dependence chain of length n

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 24 / 30

A Checker for Finite State Transactions 5

The multi-trans search procedure is the main “engine” of the check
process. It primarily takes a BDD defining a set of states for some fixed
number of transactions and tries to take backwards steps to push all
transactions to init states. A few key optimizations are involved:

focused search

When computing backward search, we attempt to push back one focus
transaction.. it will continue until its backward transition is blocked.. if so,
then we change the focus to a transaction that blocked.. if the focus is
blocked and we cannot pick any new blocking transactions, then the
search fails immediately.

...and....

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 25 / 30

A Checker for Finite State Transactions 6

searching through spec.

We operate on the assumption that spec.s are significantly smaller systems
and faster to search through than impl.s. We utilize this by jumping up to
the spec, check to see if we can show the mapped states to be unreachable
and if not, we will use the “path” in the spec. as a guide for searching in
the impl.

spliting and reordering transaction BDDs

We also use BDD splitting to try and reduce the breadth of search we try
to store in the BDDs as we go along, and we reorder the transactions in
the BDDs to better utilize the previous state caches.

We also note that we can target starvation and cycle checks to include at
least one transaction block which is not in the specification.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 26 / 30

Future Work: General Improvements

There is a LOT of potential room for improving the efficiency of the
algorithms in the checker and potentially extending the range of what
could be defined as transactions.

One big overarchiing consideration is that the multi-trans searches are
basically searches for the some interlock which keeps the bad states or
sequences from being reached.. with some early computation to determine
where the interlocks exist, it might greatly speed up the multi-trans checks.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 27 / 30

Future Work: Easing the Burden of Definition

As presented, the restrictions on transaction interaction are severe and
require some thought to work through..

I have some macros which allow system next functions to be defined as a
set of “local” update rules which keeps the definition a bit more sane..

But it would be nice to come up with a more systematic way to extract a
definition of transaction system (or at least partially) from a more realistic
definition.

In addition, I would like to auto-generate a monitor which could detect
inconsistencies between real implementation system and a transaction
system for simulations of the real implementation.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 28 / 30

Future Work: Proving Finite State Checker Correct

The primary interest is in proving soundness of the checker.. Basically the
following steps:

Define a proof generator from the typecheck output that proves the
init and next functions are effectively-finite.

Prove that the translator produces BDDs which are equivalent to the
system functions on a finite domain

Prove that when the Checker returns PASS then we have a
well-founded-trans-refinement

Prove that well-founded-trans-refinement implies
fair-stuttering-refinement

I think most of this is tractable. I can see how to do the first two pieces
and am working through the last piece, but proving the checker ensures
well-founded-trans-refinement will be the most difficult step..

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 29 / 30

Future Work: From BDDs to Terms

BDDs are great when an effective ordering exists and the transaction states
are sufficiently finite.. But, they can be inefficient and more importantly,
the user has less control of the efficiency of BDD computations.. At a
certain point, you just hope they work and if not, try to introduce another
intermediate system or change how the systems are defined.

My preference would be to use terms to represent the states and use
rewriting extended by new definitions and rules from the user.. There are
many technical hurdles to making this happen (most pressing is the need
to extend rewriting to effectively include first-order quantification)... May
also need the user to supply some invariants of the reachable transaction
states that we can prove are invariant..

But most of the pieces of well-founded-trans-refinement are
well-suited to the potential of verifying with expanding next-state relations
and rewriting.

Rob Sumners (AMD) Transaction Progress Checking November 16th, 2015 30 / 30

	Motivations
	Specifications of Reactive Systems
	Verifying State Transition Systems
	Targeting Transaction Systems

	Fair Stuttering Refinements
	Transaction Systems
	Defining Transaction Systems

	Examples
	Example Specification: Shared Memory Specification
	Example Implementation: Cache Coherence Implementation

	Reducing Fair Stuttering Refinement
	Finite State Checker
	Future Work

