
March, 2016

Symbolic Simulation of x86-64 Instructions
Using Congruence-Based Rewriting

ACL2 Seminar

Shilpi Goel

A Failed but Interesting Experiment on the x86isa Model
Useful

/30

This is a Weird Talk

I’m going to talk about a plan for symbolic simulation on the x86isa
- that didn’t work
- how it would have worked, had it worked
- why it didn’t work
- why it is still good to remember this plan

2

I don’t have a success story to convince you that this plan is not useless.
Instead, I’ll try to show its worth by describing an experiment that failed.

/30

What I’ll Cover in This Talk

• Classical approach that employs equality-based rewriting to perform

symbolic simulation using interpreter-based models in ACL2

• Why I wanted a different approach for the x86isa
- Overview of the x86 paging system

• An alternative approach that employs congruence-based rewriting

- Overview of congruence-based reasoning in ACL2

• Why this alternative approach failed for the x86isa
- But this approach is a solution for problems like…

3

/30

Quick Overview: Interpreter-Based Model in ACL2

An interpreter-based model typically has the following main components:
1. State

- Registers, Memory, Flags, etc.
2. Instruction Semantic Functions

-semantic-fn(x86) → x86ʹ
- Specification of each instruction (ADD, SUB, etc.)

3. Step Function
-step(x86) → x86ʹ
- Fetches, decodes, and executes one instruction

4. Run Function
-run(n,x86) → x86ʹ
- Calls step n times or till an error occurs, whichever comes first

4Classical Approach for Symbolic Simulation | Interpreter-Based Models

/30

Equality-Based Rewriting for Symbolic Simulation

5Classical Approach for Symbolic Simulation | Equality-Based Rewriting

(defthm step-opener
 (implies <hyps>
 (equal (step x86)
 (top-level-opcode-execute pc ... x86))))

(defthm run-opener-no-error
 (implies (and (not (ms x86)) (not (zp n)))
 (equal (run n x86)
 (run (1- n) (step x86)))))

(defthm run-opener-error-or-end
 (implies (or (ms x86) (zp n))
 (equal (run n x86) x86)))

/30

Example: Symbolic Simulation of CLC instruction

(run 1 x86)
;; Using run-opener-no-error
=
(run 0 (step x86))
;; Using step-opener
=
(run 0 (top-level-opcode-execute pc ... x86))
;; Opening up top-level-opcode-execute
=
(run 0 (clc-semantic-fn pc ... x86))
;; Opening up clc-semantic-fn
=
(run 0 (!rip (1+ pc) (!cf 0 x86)))
;; Using run-opener-error-or-end
=
(!rip (1+ pc) (!cf 0 x86))

6Classical Approach for Symbolic Simulation | Equality-Based Rewriting

/30

Example: Symbolic Simulation of CLC instruction

(run 1 x86)
=
(!rip (1+ pc) (!cf 0 x86))

7Classical Approach for Symbolic Simulation | Equality-Based Rewriting

We usually reason about projections from this symbolic expression.

<preconditions> ⇒ (read *pc* (run 1 x86)) = (1+ pc)

/30

x86isa: Modes of Operation

1. Programmer-level Mode: provides the same interface to the x86
state as is provided by an OS to application programs

2. System-level Mode: provides the same interface to programs as is
provided by the processor

For this talk, the main difference between these modes is the view of
the memory.

Programmer-level mode traffics in linear memory.
- Address translation is not a part of the model.
System-level mode traffics in physical memory.
- Address translation (paging) is a part of the model.

8A Different Approach for x86isa | Modes of Operation

/30

Physical
Memory

CR3

PML4E

PDPTE

PDE

PTE

PAGING (4K pages)

Physical Addr.

4K Page

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

9

/30

Programmer-Level Mode: CLC instruction

(run 1 x86)
...
=
(!rip (1+ pc) (!cf 0 x86))

10A Different Approach for x86isa | Programmer-level Mode

= (mv-nth 2 (rm08 pc x86))

Reads from the memory do not modify the x86 state.

/30

System-Level Mode: CLC instruction

(run 1 x86)
...
=
(!rip (1+ pc) (!cf 0 (mv-nth 2 (rm08 pc x86))))

11A Different Approach for x86isa | System-level Mode

≠ x86

Every memory access modifies the x86 state.

/30

Physical
Memory

CR3

PML4E

PDPTE

PDE

PTE

PAGING (4K pages)

Physical Addr.

4K Page

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

12

da

a

a

a

/30

Accessed and Dirty Bits

• Address translation is done by traversing the paging data structures,

which produces on-the-fly updates — A & D bits.

• For programs other than those that swap pages to/from the physical

memory, writes to these bits are just “side effects”.
- A & D bits do not affect the address translation.

• I don’t want to see x86 symbolic expressions cluttered with writes that
don’t affect a program’s execution.
- Having these writes hanging around slows down rewriting too.

13A Different Approach for x86isa | Accessed and Dirty Bits

/30

step Opener Lemma in System-Level Mode

(defthm step-opener-in-programmer-level-mode
 (implies (and (programmer-level-mode x86)
 (other-hyps))
 (equal (step x86)
 (top-level-opcode-execute pc ... x86))))

(defthm step-opener-in-system-level-mode
 (implies (and (not (programmer-level-mode x86))
 (other-hyps))
 (xlate-equiv (step x86)
 (top-level-opcode-execute pc ... x86))))

step: reads an instruction from the memory, decodes it, and dispatches
control to the appropriate instruction semantic function.

14A Different Approach for x86isa | step Opener Lemma

/30

xlate-equiv

Two x86 states are translate-equivalent x86 states or xlate-equiv if:

1. the paging structures contained in the memory of the two states must
be equal, modulo the accessed and dirty bits.

2. all other components, including the rest of the memory, of the two
states must be exactly equal.

15A Different Approach for x86isa | xlate-equiv

/30

step Opener Lemma in System-Level Mode

(defthm step-opener-in-system-level-mode
 (implies (and (not (programmer-level-mode x86))
 (other-hyps))
 (xlate-equiv (step x86)
 (top-level-opcode-execute pc ... x86))))

But on its own, the above lemma doesn’t do us much good; ACL2 replaces
the conclusion by

(iff
 (xlate-equiv (step x86) (top-level-opcode-execute pc ... x86))
 t)

16

We want ACL2 to treat xlate-equiv the same way it treats iff and
equal; we want to “hang” rewriting on it.

A Different Approach for x86isa | step Opener Lemma

/30

Overview of Congruence-Based Rewriting

17

• Equivalence Relations
- defequiv, :rule-classes :equivalence

• Equiv-Rewrite (or Driver) Rules
- :rule-classes :rewrite

• Congruence Rules:
-defcong, :rule-classes :congruence

• Refinement Rules
- defrefinement, :rule-classes :refinement

Congruence-Based Rewriting | Overview

/30

Equivalence Relations

18

Functions like xlate-equiv must be equivalence relations.
- defequiv, :rule-classes :equivalence

(defequiv <equiv>):

(defthm <equiv>-is-an-equivalence
 (and (booleanp (<equiv> x y))
 (<equiv> x x)
 (implies (<equiv> x y)
 (<equiv> y x))
 (implies (and (<equiv> x y) (<equiv> y z))
 (<equiv> x z)))
 :rule-classes :equivalence)

Congruence-Based Rewriting | Equivalence Relations

/30

Equiv-Rewrite Rules

19

Rules like step-opener-in-system-level-mode are equiv-rewrite
rules (or driver rules). They rewrite terms using your equivalence
relations.

- :rule-classes :rewrite

(defthm step-opener-in-system-level-mode
 (implies (and (not (programmer-level-mode x86))
 (other-hyps))
 (xlate-equiv (step x86)
 (top-level-opcode-execute pc…x86))))

Congruence-Based Rewriting | Equiv-Rewrite Rules

/30

Congruence Rules

20

These rules tell ACL2 where the equiv-rewrite rules can be applied —
they tell ACL2 to interpret an equiv-rewrite rule as hanging on the new

equivalence relation, and not iff.
-defcong, :rule-classes :congruence

(defcong equiv1 equiv2 (fn x1 ... xk ... xn) k):

(defthm congruence-rule-example
 (implies (equiv1 xk xk-equiv)
 (equiv2 (fn x1... xk ... xn)
 (fn x1... xk-equiv ... xn)))
:rule-classes :congruence)

Congruence-Based Rewriting | Congruence Rules

/30

Refinement Rules

21

These rules allow equiv1-rewrite rules to be used in place of equiv2-

rewrite rules. Equal is a refinement of all equivalence relations.
-defrefinement, :rule-classes :refinement

(defrefinement equiv1 equiv2):

(defthm refinement-rule-example
 (implies (equiv1 x y) (equiv2 x y))
:rule-classes :refinement)

Congruence-Based Rewriting | Refinement Rules

/30

Congruence-Based Rewriting

22

<DEMO>

Congruence-Based Rewriting | Demo

/30

x86isa: Symbolic Simulation in System-Level Mode

(defthm run-and-xlate-equiv
 (implies (xlate-equiv x86-1 x86-2)
 (xlate-equiv (run n x86-1) (run n x86-2)))
 :rule-classes :congruence)

(defthm step-opener-in-system-level-mode
 (implies (and (not (programmer-level-mode x86))
 (other-hyps))
 (xlate-equiv (step x86)
 (top-level-opcode-execute pc ... x86))))

(defthm run-opener-no-error
 (implies (and (not (ms x86)) (not (zp n)))
 (equal (run n x86)
 (run (1- n) (step x86)))))

23Congruence-Based Rewriting | Symbolic Simulation in System-Level Mode

/3024Congruence-Based Rewriting | Symbolic Simulation in System-Level Mode

(run 1 x86) = (run 0 (step x86))

Using run-opener-no-error, equal context

/3025Congruence-Based Rewriting | Symbolic Simulation in System-Level Mode

We could rewrite the above to

(run 0 (top-level-opcode-execute pc ... x86))

using

(defthm step-opener-in-system-level-mode
 (implies (and (not (programmer-level-mode x86))
 (other-hyps))
 (xlate-equiv (step x86)
 (top-level-opcode-execute pc ... x86))))

(defthm run-and-xlate-equiv
 (implies (xlate-equiv x86-1 x86-2)
 (xlate-equiv (run n x86-1) (run n x86-2)))
 :rule-classes :congruence)

only if we could switch to the xlate-equiv context from the equal
context.

(run 1 x86) = (run 0 (step x86)) = ?

/3026

(defthm <accessor-fn>—and-xlate-equiv
 (implies (xlate-equiv x86-1 x86-2)
 (equal (<accessor-fn> ... x86-1))
 (<accessor-fn> ... x86-2))))
 :rule-classes :congruence)

Congruence-Based Rewriting | Symbolic Simulation in System-Level Mode

To switch to the xlate-equiv context from the equal context, we need
the following type of rules:

(read *pc* (run 1 x86))
=
(read *pc* (run 0 (step x86)))
=
(read *pc* (run 0 (top-level-opcode-execute pc ... x86)))
=
and so on.

/30

Key to this Plan

27

(defthm memi-and-xlate-equiv
 (implies (xlate-equiv x86-1 x86-2)
 (equal (memi phy-addr x86-1))
 (memi phy-addr x86-2))))
 :rule-classes :congruence)

But, the following isn’t a theorem!

(defthm <accessor-fn>—and-xlate-equiv
 (implies (xlate-equiv x86-1 x86-2)
 (equal (<accessor-fn> ... x86-1))
 (<accessor-fn> ... x86-2))))
 :rule-classes :congruence)

What if phy-addr is the physical address that contains the accessed and
dirty bits?

Congruence-Based Rewriting | Symbolic Simulation in System-Level Mode

/30

A Problem for this Solution

28

An entire field of the state needs to be ignored during reasoning.
- E.g., a field which records information during program execution.
- The field’s reader should not appear in run and its supporters.
- The field’s writer may appear in run and its supporters.

(defthm <accessor-fn>—and-xlate-equiv
 (implies (xlate-equiv x86-1 x86-2)
 (equal (<accessor-fn> ... x86-1))
 (<accessor-fn> ... x86-2))))
 :rule-classes :congruence)

Congruence-Based Rewriting | A Problem for This Solution

/30

Remember: Warnings!

29

Pay attention to warnings when doing congruence-based rewriting.

- Double-rewrite [:doc double-rewrite]
- Replacing iff by equal [:doc congruence]

Congruence-Based Rewriting | Warnings

March, 2016

Symbolic Simulation of x86-64 Instructions
Using Congruence-Based Rewriting

ACL2 Seminar

Shilpi Goel

A Failed but Interesting Experiment on the x86isa Model
Useful

