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Schur’s Theorem [Schur 1917]

Can the set of natural numbers {1, 2, . . . } be partitioned into
k parts with no part containing a, b, and c such that a+b=c?
Otherwise, what is the smallest finite counter-example?

{1} → {1} → {1, 4} → {1, 4} → ×{} {2} {2} {2, 3}

init 1+1=2 2+2=4 1+3=4
1+4=5
2+3=5

Theorem (Schur’s Theorem)

For each k > 0, there exists a number S(k), known as Schur
number k , such that [1, S(k)] can be partitioned into k parts
with no part containing a, b, and c such that a + b = c , while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965],
160 ≤ S(5) ≤ 315 [Exoo 1994, Fredricksen 1979].
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Schur’s Theorem on Squares

Can the set of squares {12, 22, 32, . . . } be partitioned into k
parts with no part containing a, b, and c such that a + b = c?

The case k = 2 is already very difficult to determine:

{12, 22, 32, 42, 62, 72, 82, 92, 112, 122, 132, 142, 162, 172, 182, 192, . . . }
{52, 102, 152, 202, . . . }

Partitioning the first thousand squares is easy (even manually).

A computer program can partition the first several thousands
squares ({12, . . . , 76642}) [Cooper and Overstreet 2015].

Can the infinite set of squares be partitioned into two parts?
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Pythagorean Triples Problem [Erdős and Graham 1980]

The Boolean Pythagorean Triples problem is a reformulation
of Schur’s theorem on squares restricted to two parts:

Can the set of natural numbers {1, 2, 3, . . . } be partitioned
into two parts such that no part contains a Pythagorean triple
(a, b, c ∈ N with a2 + b2 = c2)?

A partition into two parts is encoded using Boolean variables
xi with i ∈ {1, 2, 3, . . . } such that xi = 1 (= 0) means that i
occurs in the first (second) part. For each Pythagorean triple
(a, b, c) two clauses are added: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

Theorem (Main result via parallel SAT solving)

[1, 7824] can be partitioned into two parts, such that no part
contains a Pythagorean triple. This is impossible for [1, 7825].
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An Extreme Solution (a valid partition of [1, 7824])
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Main Contribution

We present a framework that combines, for the first time, all
pieces to produce verifiable SAT results for very hard problems.

The status quo of using combinatorial solvers and years of
computation is arguably intolerable for mathematicians:

I Kouril and Paul [2008] computed the sixth van der
Waerden number (W (2, 6) = 1132) using dedicated
hardware without producing a proof.

I McKay’s and Radziszowski’s big result [1995] in Ramsey
Theory (R(4, 5) = 25) still cannot be reproduced.

We demonstrate our framework on the Pythagorean triples
problem, potentially the hardest problem solved with SAT yet.
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Solving Framework for
Hard-Combinatorial Problems
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Overview of Solving Framework

1: encode 2: transform 3: split 4: solve

5: validate

cubes
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Phase 1: Encode

Input: encoder program

Output: the “original” CNF formula

Goal: make the translation to SAT as simple as possible

for (int a = 1; a <= n; a++)

for (int b = a; b <= n; b++) {

int c = sqrt (a*a + b*b);

if ((c <= n) && ((a*a + b*b) == (c*c))) {

addClause ( a, b, c);

addClause (-a, -b, -c); } }

F7824 has 6492 (occurring) variables and 18930 clauses, and
F7825 has 6494 (occurring) variables and 18944 clauses.
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Overview of Solving Framework: Phase 2
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Phase 2: Transform

Input: original CNF formula

Output: transformed CNF formula and a transformation proof

Goal: optimize the formula regarding the later (solving) phases

We applied two transformations:

I Pythagorean Triple Elimination removes Pythagorean
Triples that contain an element that does not occur in any
other Pythagorean Triple, e.g. 32 + 42 = 52. (till fixpoint)

I Symmetry breaking places the number most frequently
occurring in Pythagorean triples (2520) in the first part.

All transformation (pre-processing) techniques can be
expressed using RAT steps [Järvisalo, Heule, and Biere 2012].
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Phase 2: Blocked Clauses [Kullmann’99]

Definition (Blocking literal)

A literal l in a clause C of a CNF F blocks C w.r.t. F if
for every clause D ∈ Fl̄ , the resolvent (C \ {l}) ∪ (D \ {l̄})
obtained from resolving C and D on l is a tautology.

With respect to a fixed CNF and its clauses we have:

Definition (Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example (Blocking literals and blocked clauses)

Consider the formula (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c).
First clause is not blocked.
Second clause is blocked by both a and c̄ .
Third clause is blocked by c .

Proposition

Removal of an arbitrary blocked clause preserves satisfiability.
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Phase 2: Blocked Clause Elimination (BCE)

Definition (BCE)

While a clause C in a formula F is blocked, remove C from F .

Example (BCE)

Consider (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c).
After removing either (a ∨ b̄ ∨ c̄) or (ā ∨ c), the clause
(a ∨ b) becomes blocked (no clause with either b̄ or ā).
An extreme case in which BCE removes all clauses!

Example (Pythagorean Triples)

The clauses (x3 ∨ x4 ∨ x5) and (x̄3 ∨ x̄4 ∨ x̄5) are blocked in
F7824 and F7825 (actually in any Fn).
BCE (F7824) has 3740 variables and 14652 clauses, and
BCE (F7825) has 3745 variables and 14672 clauses.

BCE can simulate many high-level reasoning techniques.
[Järvisalo, Biere, and Heule 2010]
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Overview of Solving Framework: Phase 3
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Phase 3: Split

Input: transformed formula

Output: cubes and tautology proof

Goal: partition input in as
many subproblems such that
total wallclock time is minimal

Two layers of splitting F7824:

I The top level split partitions
the transformed formula into
exactly a million subproblems;

I Each subproblem is
partitioned into tens of
thousands of subsubproblems.
Total time: 35,000 CPU hours

x5

x2x3

x7 x3

x6

ft

f t

ft

t f

t f

f t

a 5 -3 0

a 5 3 7 0

a 5 3 -7 0

a -5 2 0

a -5 -2 3 -6 0

a -5 -2 3 6 0

a -5 -2 -3 0
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Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere 2011]

There exists two main SAT solving paradigms:

I Look-ahead aims to construct a small binary search-tree
using (expensive) global heuristics.

I Conflict-driven clause-learning (CDCL) aims to find a
short refutation using (cheap) local heuristics.

Combining look-ahead and CDCL, called cube-and-conquer,
does not work out of the box. Crucial details are:

I Partition a given formula into many (millions) of
subproblems. When just a few subproblems are created,
say only 32, the performance could actually decrease.

I Use heuristics to create equally hard subproblems, i.e., not
simply using the depth of the search-tree.

Cube-and-conquer solves many hard-combinatorial problems
significantly faster than both pure CDCL and pure look-ahead.
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Details regarding the splitting heuristics

Splitting based on look-aheads:

I Count the number of assigned variables (large formulas)

I Count the number of clause reductions (medium formulas)

I Sum of the weighted new binary clauses (3-SAT)

Equations (init, average, and update) for 3-SAT heuristics h4:

h0(x) = h0(x̄) = 1 µi =
1

2n

∑
x∈var(F )

(
hi(x)+hi(x̄)

)
hi+1(x) = max(α,min(β,

∑
(x∨y∨z)∈F

(hi(ȳ)

µi
·hi(z̄)

µi

)
+ γ

∑
(x∨y)∈F

hi(ȳ)

µi
)).

Rnd: α = 0.01, β = 25, γ = 3.3 Ptn: α = 8, β = 550, γ = 25
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Overview of Solving Framework: Phase 4
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Phase 4: Solve

Input: transformed formula and cubes

Output: cube proofs (or satisfying assignment)

Goal: solve (with proof logging) all cubes as fast as possible

Let ϕi be the i th cube with i ∈ [1, 1000000].

We first solved all F7824 ∧ ϕi , total runtime was 13, 000 CPU
hours (less than a day on the cluster). One cube is satisfiable.

The backbone of a formula is the set of literals that are
assigned to true in all solutions. The backbone of F7824 after
symmetry breaking consists of 2304 literals, including

I x5180 and x5865, while 51802 + 58652 = 78252

I x̄625 and x̄7800, while 6252 + 78002 = 78252
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Phase 4: Short history of CDCL improvements

Conflict-driven clause learning (CDCL) has been the dominant
SAT solving paradigm and improved significantly in 20 years.

I Invented by Marques-Silva and Sakallah [1997];

I Dedicated data-structure and variable selection heuristics
made CDCL really competitive [MoskewiczMZZM 2001];

I Efficient implementation [Een and Sörensson 2003];

I New value selection and rapid restarts make CDCL ”local
search for UNSAT” [Pipatsrisawat and Darwiche 2007];

I An alternative restart implementation makes ultra rapid
restarts optimal [van der Tak, Ramos, and Heule 2011].

Crucial for our framework: reusing the heuristics and learnt
clauses while solving similar (sub)problems, known as
Incremental SAT Solving [Een and Sörensson 2003]
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Overview of Solving Framework: Phase 5
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Phase 5: Motivation for validating unsatisfiability proofs

Satisfiability solvers are used in amazing ways...

I Hardware and software verification (Intel and Microsoft)
I Hard-Combinatorial problems:

I van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]

I Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]

I Erdős Discrepancy Problem [Konev and Lisitsa, 2014]

..., but satisfiability solvers have errors and only return yes/no.

I Documented bugs in SAT, SMT, and QBF solvers
[Brummayer and Biere, 2009; Brummayer et al., 2010]

I Implementation errors often imply conceptual errors

I Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be checkable.
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Clausal Proof System [Järvisalo, Heule, and Biere 2012]

F

Learn: add a clause
* Preserve satisfiability

Forget: remove a clause
* Preserve unsatisfiablity

Satisfiable
* Forget last clause

Unsatisfiable
* Learn empty clause

init
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Ideal Properties of a Proof System for SAT Solvers

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs
Zhang and Malik, 2003

Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003

Van Gelder, 2008

Clausal proofs + clause deletion
Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]
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Phase 5: Validate Pythagorean Triples Proofs.

5: validate

original
formula

transform
proof

tautology
proof

cube
proofs

We check the proofs with the DRAT-trim checker, which has
been used to validate the UNSAT results of the international
SAT Competitions since 2013.

Recently it was shown how to validate DRAT proofs in
parallel [Heule and Biere 2015].

The size of the merged proof is almost 200 terabyte and has
been validated in 16,000 CPU hours.
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Results

on the million subproblems
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Histogram of Frequency of Cube Sizes
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Runtime of Cube and Conquer Averaged per Cube Size
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Scatterplot: Cube versus Conquer Runtimes
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Scatterplot: Validation versus Conquer Runtimes
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Scatterplot: CDCL versus Cube-and-Conquer Runtimes
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Scatterplot: Look-ahead versus Cube-and-Conquer
Runtimes
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Conclusions and Future Work
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An Extreme Solution (a valid partition of [1, 7824])
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Conclusions

Theorem (Main result)

[1, 7824] can be partitioned into two parts, such that no part
contains a Pythagorean triple. This is impossible for [1, 7825].

We solved and verified the theorem via SAT solving:

I Cube-and-conquer facilitated massive parallel solving.

I A new look-ahead heuristic was developed to substantially
reduce the search space.

I The proof is huge (200 terabyte), but can be compressed
to 68 gigabyte (13,000 CPU hours to decompress) and be
validated in 16,000 CPU hours.
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Heule’s Contributions to Solving Framework
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[HVC 2011]

[LPAR 2010]

[JAR 2012]

[JAIR 2015]

[CADE 2012]

[JSAT 2011]

[FAIA 2009]

[APPA 2014]

[HVC 2012]

[ITP 2013]

[FMCAD 2013][SAT 2014]
[STVR 2014]

[LPAR 2015]

[ICGI 2010]
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Future Directions
Apply our solving framework to other challenges in Ramsey
Theory and elsewhere:

I Existing results for which no proof was produced, for
example W(2,6) = 1132 [Kouril and Paul 2008].

I Century-old open problems appear solvable now, e.g. S(5).

Look-ahead heuristics are crucial and we had to develop
dedicated heuristics to solve the Pythagorean triples problem.

I Develop powerful heuristics that work out of the box.

I Alternatively, add heuristic-tuning techniques to the tool
chain [Hoos 2012].

Develop a mechanically-verified, fast clausal proof checker.

Thanks!
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