# Solving and Verifying Hard Problems using SAT 

Marijn J.H. Heule<br>THE UNIVERSITY OF<br>TEXAS

## SAT Solving and Verification

## Solving Framework for Hard Problems

The Future: Verified SAT via Proofs

## SAT Solving and Verification

## Satisfiability (SAT) solving has many applications


formal verification

planning

graph theory

number theory

bioinformatics

cryptography

train safety

rewrite termination


SAT solver


## A Small Satisfiability (SAT) Problem

```
\(\left(x_{5} \vee x_{8} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee \bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{3} \vee \bar{x}_{7}\right) \wedge\left(\bar{x}_{5} \vee x_{3} \vee x_{8}\right) \wedge\)
\(\left(\bar{x}_{6} \vee \bar{x}_{1} \vee \bar{x}_{5}\right) \wedge\left(x_{8} \vee \bar{x}_{9} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{8} \vee x_{4}\right) \wedge\)
\(\left(\bar{x}_{9} \vee \bar{x}_{6} \vee x_{8}\right) \wedge\left(x_{8} \vee x_{3} \vee \bar{x}_{9}\right) \wedge\left(x_{9} \vee \bar{x}_{3} \vee x_{8}\right) \wedge\left(x_{6} \vee \bar{x}_{9} \vee x_{5}\right) \wedge\)
\(\left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{8}\right) \wedge\left(x_{8} \vee \bar{x}_{6} \vee \bar{x}_{3}\right) \wedge\left(x_{8} \vee \bar{x}_{3} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{8} \vee x_{6} \vee \bar{x}_{2}\right) \wedge\)
\(\left(x_{7} \vee x_{9} \vee \bar{x}_{2}\right) \wedge\left(x_{8} \vee \bar{x}_{9} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{9} \vee x_{4}\right) \wedge\left(x_{8} \vee x_{1} \vee \bar{x}_{2}\right) \wedge\)
\(\left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{6}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{7} \vee x_{5}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee x_{6}\right) \wedge\left(\bar{x}_{5} \vee x_{4} \vee \bar{x}_{6}\right) \wedge\)
\(\left(\bar{x}_{4} \vee x_{9} \vee \bar{x}_{8}\right) \wedge\left(x_{2} \vee x_{9} \vee x_{1}\right) \wedge\left(x_{5} \vee \bar{x}_{7} \vee x_{1}\right) \wedge\left(\bar{x}_{7} \vee \bar{x}_{9} \vee \bar{x}_{6}\right) \wedge\)
\(\left(x_{2} \vee x_{5} \vee x_{4}\right) \wedge\left(x_{8} \vee \bar{x}_{4} \vee x_{5}\right) \wedge\left(x_{5} \vee x_{9} \vee x_{3}\right) \wedge\left(\bar{x}_{5} \vee \bar{x}_{7} \vee x_{9}\right) \wedge\)
\(\left(x_{2} \vee \bar{x}_{8} \vee x_{1}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{4} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{9} \vee \bar{x}_{4}\right) \wedge\)
\(\left(x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(\bar{x}_{6} \vee x_{3} \vee \bar{x}_{9}\right) \wedge\left(\bar{x}_{7} \vee x_{5} \vee x_{9}\right) \wedge\left(x_{7} \vee \bar{x}_{5} \vee \bar{x}_{2}\right) \wedge\)
\(\left(x_{4} \vee x_{7} \vee x_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{9} \vee \bar{x}_{7}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{7}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{7}\right) \wedge\)
\(\left(x_{6} \vee x_{7} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{6} \vee \bar{x}_{7}\right) \wedge\left(x_{6} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{8} \vee x_{2} \vee x_{5}\right)\)
```

Does there exist an assignment satisfying all clauses?

Search for a satisfying assignment (or proof none exists)

$$
\begin{aligned}
& \left(x_{5} \vee x_{8} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee \bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{3} \vee \bar{x}_{7}\right) \wedge\left(\bar{x}_{5} \vee x_{3} \vee x_{8}\right) \wedge \\
& \left(\bar{x}_{6} \vee \bar{x}_{1} \vee \bar{x}_{5}\right) \wedge\left(x_{8} \vee \bar{x}_{9} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{8} \vee x_{4}\right) \wedge \\
& \left(\bar{x}_{9} \vee \bar{x}_{6} \vee x_{8}\right) \wedge\left(x_{8} \vee x_{3} \vee \bar{x}_{9}\right) \wedge\left(x_{9} \vee \bar{x}_{3} \vee x_{8}\right) \wedge\left(x_{6} \vee \bar{x}_{9} \vee x_{5}\right) \wedge \\
& \left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{8}\right) \wedge\left(x_{8} \vee \bar{x}_{6} \vee \bar{x}_{3}\right) \wedge\left(x_{8} \vee \bar{x}_{3} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{8} \vee x_{6} \vee \bar{x}_{2}\right) \wedge \\
& \left(x_{7} \vee x_{9} \vee \bar{x}_{2}\right) \wedge\left(x_{8} \vee \bar{x}_{9} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{9} \vee x_{4}\right) \wedge\left(x_{8} \vee x_{1} \vee \bar{x}_{2}\right) \wedge \\
& \left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{6}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{7} \vee x_{5}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee x_{6}\right) \wedge\left(\bar{x}_{5} \vee x_{4} \vee \bar{x}_{6}\right) \wedge \\
& \left(\bar{x}_{4} \vee x_{9} \vee \bar{x}_{8}\right) \wedge\left(x_{2} \vee x_{9} \vee x_{1}\right) \wedge\left(x_{5} \vee \bar{x}_{7} \vee x_{1}\right) \wedge\left(\bar{x}_{7} \vee \bar{x}_{9} \vee \bar{x}_{6}\right) \wedge \\
& \left(x_{2} \vee x_{5} \vee x_{4}\right) \wedge\left(x_{8} \vee \bar{x}_{4} \vee x_{5}\right) \wedge\left(x_{5} \vee x_{9} \vee x_{3}\right) \wedge\left(\bar{x}_{5} \vee \bar{x}_{7} \vee x_{9}\right) \wedge \\
& \left(x_{2} \vee \bar{x}_{8} \vee x_{1}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{4} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{9} \vee \bar{x}_{4}\right) \wedge \\
& \left(x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(\bar{x}_{6} \vee x_{3} \vee \bar{x}_{9}\right) \wedge\left(\bar{x}_{7} \vee x_{5} \vee x_{9}\right) \wedge\left(x_{7} \vee \bar{x}_{5} \vee \bar{x}_{2}\right) \wedge \\
& \left(x_{4} \vee x_{7} \vee x_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{9} \vee \bar{x}_{7}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{7}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{7}\right) \wedge \\
& \left(x_{6} \vee x_{7} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{6} \vee \bar{x}_{7}\right) \wedge\left(x_{6} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{8} \vee x_{2} \vee x_{5}\right)
\end{aligned}
$$

Solutions are easy to verify, but what about unsatisfiability?

## Motivation for validating unsatisfiability proofs

Satisfiability solvers are used in amazing ways...

- Hardware and software verification (Intel and Microsoft)
- Hard-Combinatorial problems:
- van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]
- Gardens of Eden in Conway's Game of Life [Hartman, Heule, Kwekkeboom, and Noels, 2013]
- Erdős Discrepancy Problem
..., but satisfiability solvers have errors and only return yes/no.
- Documented bugs in SAT, SMT, and QBF solvers
[Brummayer and Biere, 2009; Brummayer et al., 2010]
- Implementation errors often imply conceptual errors
- Mathematical results require a stronger justification than a simple yes/no by a solver. UNSAT must be checkable.


## Clausal Proof System [Järvisalo, Heule, and Biere 2012]



## Unsatisfiable

* Learn empty clause
$\xrightarrow{\text { init }} F$


Satisfiable * Forget last clause


Forget: remove a clause * Preserve unsatisfiablity

## Ideal Properties of a Proof System for SAT Solvers



Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008
Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + clause deletion Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]

## Ideal Properties of a Proof System for SAT Solvers

## Easy to Emit

## Compact

## Checked Efficiently

## Expressive



## Clausal RAT proofs

Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]

## Solving Framework for Hard-Combinatorial Problems

## Overview of Solving Framework



## Case Study: Pythagorean Triples Problem [Graham 1980]

Can the set of natural numbers $\{1,2,3, \ldots\}$ be partitioned into two parts such that no part contains a Pythagorean triple $\left(a, b, c \in \mathbb{N}\right.$ with $\left.a^{2}+b^{2}=c^{2}\right)$ ?

A computer program can partition the first several thousands numbers ( $\{1, \ldots, 7664\}$ ) [Cooper and Overstreet 2015].

A partition into two parts is encoded using Boolean variables $x_{i}$ with $i \in\{1,2,3, \ldots, n\}$ such that $x_{i}=1(=0)$ means that $i$ occurs in Part 1 (Part 2). For each Pythagorean triple $(a, b, c)$ two clauses are added: $\left(x_{a} \vee x_{b} \vee x_{c}\right) \wedge\left(\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}\right)$.

## Theorem (Main result via parallel SAT solving)

[1,7824] can be partitioned into two parts, such that no part contains a Pythagorean triple. This is impossible for [1,7825].

## Highlight: Phase 2



## Phase 2: Transform

Input: original CNF formula
Output: transformed CNF formula and a transformation proof Goal: optimize the formula regarding the later (solving) phases

We applied two transformations (realized via blocked clauses):

- Pythagorean Triple Elimination removes Pythagorean Triples that contain an element that does not occur in any other Pythagorean Triple, e.g. $3^{2}+4^{2}=5^{2}$. (till fixpoint)
- Symmetry breaking places the number most frequently occurring in Pythagorean triples (2520) in Part 1 (encode).

All transformation (pre-processing) techniques can be expressed using RAT steps [Järvisalo, Heule, and Biere 2012].

## Phase 2: Blocked Clauses [Kullmann'99]

Definition (Blocking literal)
A literal $I$ in a clause $C$ of a CNF $F$ blocks $C$ w.r.t. $F$ if for every clause $D \in F_{\bar{T}}$, the resolvent $(C \backslash\{/\}) \cup(D \backslash\{\bar{l}\})$ obtained from resolving $C$ and $D$ on / is a tautology.
With respect to a fixed CNF and its clauses we have:
Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.

## Phase 2: Blocked Clauses [Kullmann'99]

## Definition (Blocking literal)

A literal $I$ in a clause $C$ of a CNF $F$ blocks $C$ w.r.t. $F$ if for every clause $D \in F_{\bar{T}}$, the resolvent $(C \backslash\{/\}) \cup(D \backslash\{\bar{l}\})$ obtained from resolving $C$ and $D$ on / is a tautology.
With respect to a fixed CNF and its clauses we have:

## Definition (Blocked clause)

A clause is blocked if it contains a literal that blocks it.
Example (Blocking literals and blocked clauses)
Consider the formula $(a \vee b) \wedge(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee c)$. First clause is not blocked.
Second clause is blocked by both a and $\bar{c}$. Third clause is blocked by c.

## Phase 2: Blocked Clauses [Kullmann'99]

## Definition (Blocking literal)

A literal $I$ in a clause $C$ of a CNF $F$ blocks $C$ w.r.t. $F$ if for every clause $D \in F_{\bar{T}}$, the resolvent $(C \backslash\{/\}) \cup(D \backslash\{\bar{l}\})$ obtained from resolving $C$ and $D$ on / is a tautology.
With respect to a fixed CNF and its clauses we have:

## Definition (Blocked clause)

A clause is blocked if it contains a literal that blocks it.
Example (Blocking literals and blocked clauses)
Consider the formula $(a \vee b) \wedge(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee c)$. First clause is not blocked.
Second clause is blocked by both a and $\bar{c}$.
Third clause is blocked by c.

## Proposition

Removal of an arbitrary blocked clause preserves unsatisfiability.

## Phase 2: Blocked Clause Elimination (BCE)

## Definition (BCE)

While a clause $C$ in a formula $F$ is blocked, remove $C$ from $F$.
Example (BCE)
Consider $(a \vee b) \wedge(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee c)$.
After removing either ( $a \vee \bar{b} \vee \bar{c})$ or $(\bar{a} \vee c)$, the clause $(a \vee b)$ becomes blocked (no clause with either $\bar{b}$ or $\bar{a}$ ).
An extreme case in which BCE removes all clauses!

## Example (Pythagorean Triples)

The clauses ( $x_{3} \vee x_{4} \vee x_{5}$ ) and ( $\left.\bar{x}_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}\right)$ are blocked in
$F_{7824}$ and $F_{7825}$ (actually in any $F_{n}$ ).
BCE ( $F_{7824}$ ) has 3740 variables and 14652 clauses, and BCE ( $F_{7825}$ ) has 3745 variables and 14672 clauses.

BCE can simulate many high-level reasoning techniques. [Järvisalo, Biere, and Heule 2010]

## Highlight: Phase 5



## Phase 5: Validate Pythagorean Triples Proofs.



We check the proofs with the DRAT-trim checker, which has been used to validate the UNSAT results of the international SAT Competitions since 2013.

Recently it was shown how to validate DRAT proofs in parallel [Heule and Biere 2015].

The size of the merged proof is almost 200 terabyte and has been validated in $16,000 \mathrm{CPU}$ hours.

## The Future: Verified SAT via Proofs

## Next Step: Verify the Proof Checker

Since 2013 all results of the SAT Competitions are validated. The main question asked: can you verify the checker?

The verified RAT checker [Wetzler, Heule, and Hunt 2013] is too slow for practical use (say $1000 \times$ slower compared to $C$ ).

The ACL2 theorem prover allows implementing (and verifying) a checker that is only about $60 \%$ slower compared to C.

Nathan Wetlzer started to work on this during his PhD thesis, but still quite some work is required.

## Second Next Step: Verified SAT Solving

Question: Would it be possible to implement a fast mechanically-verified SAT solver?

SAT solvers are constantly being improved using a vast amount of complex techniques making mechanical verification hard.

However, given a fast mechanically-verified proof checker, SAT solver implementations do not have to be verified.

SAT solver can simply be used as an oracle to produce proofs.

## Future: Combining it all to have proofs for hard problems

Next steps in verified SAT solving:

- Develop a fast mechanically-verified, clausal proof checker;
- Implement a fast, proof-producing SAT solving in ACL2.

Integrate the solving framework in a theorem prover:

- Show that the encoding of problems into SAT is correct;
- Show the correctness of clausal proof decomposition.

Apply our solving framework to various hard problems:

- Obtain and verify a proof for Radziszowski's and McKay's big result [1995] in Ramsey Theory: $R(4,5)=25$;
- Century-old open problems appear solvable now, such as Schur number $S(5)$.


## Future: Combining it all to have proofs for hard problems

Next steps in verified SAT solving:

- Develop a fast mechanically-verified, clausal proof checker;
- Implement a fast, proof-producing SAT solving in ACL2.

Integrate the solving framework in a theorem prover:

- Show that the encoding of problems into SAT is correct;
- Show the correctness of clausal proof decomposition.

Apply our solving framework to various hard problems:

- Obtain and verify a proof for Radziszowski's and McKay's big result [1995] in Ramsey Theory: $R(4,5)=25$;
- Century-old open problems appear solvable now, such as Schur number $S(5)$.


## Thanks!

