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Project Overview
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Goal:  Build robust tools to increase software reliability 

‣ Verify critical properties of application and system programs 

‣ Correctness with respect to behavior, security, & resource usage 

Plan of Action: 

1. Build a formal, executable x86 ISA model using ACL2 

2. Develop a machine-code analysis framework based on this model 

3. Employ this framework to verify application and system programs
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Highlights of this Talk
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Unified Model 
- Simulator: Executable file readers & loaders; GDB-like mode for 

dynamic instrumentation 
- Reasoning Framework: ACL2 libraries to reason about x86 machine 

code

Compile-to and Build-to Specification 
A formal, executable x86 ISA model 
- Specification of low-level ISA features 
- Handles non-determinism

User Manual 
- Documentation

Open Source 
- Available online



/274

Outline

๏ Overview 

๏ Project Description 

➡ [1] Developing an x86 ISA Model 

➡ [2] Building a Machine-Code Analysis Framework 

➡ [3] Verifying Application and System Programs 

๏ Future Work & Conclusion
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Model Development

5

Interpreter-Style Operational Semantics

➡ Instruction Semantic Functions: describe the effect of each 
instruction

➡ Step Function: fetches, decodes, and executes one instruction 

➡ x86 State:  specifies the components of the ISA (registers, flags, 
memory)
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Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and 
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table 
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table 
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as 
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical 
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel 

Figure 3-2.  64-Bit Mode Execution Environment
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Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or 
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment 
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage 
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses 
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information. 

Figure 2-2.  System-Level Registers and Data Structures in IA-32e Mode
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APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instructions. The first section describes 
the IA-32 architecture’s machine instruction format. The remaining sections show the formats and encoding of 
general-purpose, MMX, P6 family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruction 
formats also apply to Intel 64 architecture. Instruction formats used in 64-bit mode are provided as supersets of 
the above.

B.1 MACHINE INSTRUCTION FORMAT
All Intel Architecture instructions are encoded using subsets of the general machine instruction format shown in 
Figure B-1. Each instruction consists of:
• an opcode
• a register and/or address mode specifier consisting of the ModR/M byte and sometimes the scale-index-base 

(SIB) byte (if required) 
• a displacement and an immediate data field (if required) 

The following sections discuss this format.

B.1.1  Legacy Prefixes
The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are optional, except when F2H, F3H 
and 66H are used in new instruction extensions. Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A, for more information on legacy prefixes.

Figure B-1.  General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6     5-3     2-07-6     5-3     2-0

T T T T T T T T T T T T T T T T

Mod   Reg*  R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None
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T T T T T T T T
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Grp 3, Grp 4 

NOTE:

*  The Reg Field may be used as an 
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1, 2, or 3 Byte Opcodes (T = Opcode 
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Handling Non-Determinism
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• Some examples of non-determinism in the ISA: 

- RFLAGS are undefined after the execution of some instructions. 

- Instructions like RDRAND are inherently non-deterministic. 

• The x86 state contains an oracle field that is consulted whenever the 
result of a non-deterministic operation is required. 

- Every value retrieved from the oracle is unique and indeterminate. 

- This allows accounting for all possible behaviors during reasoning.
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All AMD manuals: ~3000 pages

Obtaining the x86 ISA Specification
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~3400 pages

__asm__ volatile 
("stc\n\t"                   // Set CF. 
 "mov $0, %%eax\n\t"         // Set EAX = 0. 
 "mov $0, %%ebx\n\t"         // Set EBX = 0. 
 "mov $0, %%ecx\n\t"         // Set ECX = 0. 
 "mov %4, %%ecx\n\t"         // Set CL = rotate_by. 
 "mov %3, %%edx\n\t"         // Set EDX = old_cf = 1. 
 "mov %2, %%eax\n\t"         // Set EAX = num. 
 "rcl %%cl, %%al\n\t"        // Rotate AL by CL.  
 "cmovb %%edx, %%ebx\n\t"    // Set EBX = old_cf if CF = 1.  
                             // Otherwise, EBX = 0.  
 "mov %%eax, %0\n\t"         // Set res = EAX. 
 "mov %%ebx, %1\n\t"         // Set cf  = EBX. 
  
 : "=g"(res), "=g"(cf)    
 : "g"(num), "g"(old_cf), "g"(rotate_by)   
 : "rax", "rbx", "rcx", "rdx"); 

Running tests on x86 machines
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Model Validation
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How can we know that our model faithfully represents the x86 ISA? 

Validate the model to increase trust in the applicability of formal analysis.
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Optimizing the Model for Efficiency
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Optimized for 
reasoning 
efficiency

Optimized for 
execution 
efficiency

Layered modeling approach mitigates the trade-off between 
reasoning and execution efficiency. [ACL2’13]  

This layer was introduced using an ACL2 feature called Abstract 
Stobj, which was developed in response to this need for 
optimizing the x86 model.

~330K to 3.3 million 
instructions/second

Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz
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Focus on Usability
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• Two examples that illustrate our focus on user experience: 

1. Modes of operation to balance verification/simulation effort and utility 

2. Program debugging tools to be used during simulation
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Focus on Usability #1: Modes of Operation
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Programmer-Level Mode System-Level Mode

Verification of application programs Verification of system programs

Virtual memory address space 
(264 bytes)

Physical memory address space 
 (252  bytes)

Assumptions about correctness of OS 
operations

No assumptions about OS operations

~3.3 million instructions/second ~330,000 instructions/second 
(with 1G pages)

Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz
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Focus on Usability #2: Tools for the Simulator
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• Executable file readers and loaders written in ACL2 that support both 
Mach-O and ELF binary formats. 

- The input to the x86 model is the program binary 

- These tools use the meta-data in these binaries to automatically 
initialize the machine state 

• A GDB-like mode is used for the dynamic instrumentation of machine-
code. 

- Useful for debugging both the programs and the x86 specification
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Current Status: x86 ISA Model
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• The x86 ISA model supports 400+ instructions 

‣ Can execute almost all user-level programs emitted by GCC/LLVM 
‣ Successfully co-simulated a contemporary SAT solver on our model 
‣ Successfully simulated a supervisor-mode zero-copy program 

• IA-32e paging for all page configurations (4K, 2M, 1G) 

• Segment-based addressing 

• Lines of ACL2: ~85,000 (not including blank lines)
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Outline

๏ Overview 

๏ Project Description 

➡ [1] Developing an x86 ISA Model 

➡ [2] Building a Machine-Code Analysis Framework 

➡ [3] Verifying Application and System Programs 

๏ Future Work & Conclusion
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Current Status: Building Lemma Libraries
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add %edi, %eax

1. read instruction from mem 

2. read operands 

3. write sum to eax 

4. write new value to flags 

5. write new value to pc

• General libraries include lemmas 
about reads from and writes to the 
machine state, along with the 
interactions between these 
operations. 

• We include these libraries when we 
verify programs.

• General library construction and program verification are 
interdependent processes. 

- Discover the kinds of lemmas needed while verifying a program 

- See a general pattern 

- Automate the generation and proof of these lemmas
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Outline

๏ Overview 

๏ Project Description 

➡ [1] Developing an x86 ISA Model 

➡ [2] Building a Machine-Code Analysis Framework 

➡ [3] Verifying Application and System Programs 

๏ Future Work & Conclusion
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Application Program #1: popcount
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Automatically verify snippets of straight-line machine code using bit-
blasting [VSTTE’13]

55                 push   %rbp 
48 89 e5           mov    %rsp,%rbp 
89 7d fc           mov    %edi,-0x4(%rbp) 
8b 7d fc           mov    -0x4(%rbp),%edi 
8b 45 fc           mov    -0x4(%rbp),%eax 
c1 e8 01           shr    $0x1,%eax 
25 55 55 55 55     and    $0x55555555,%eax 
29 c7              sub    %eax,%edi 
89 7d fc           mov    %edi,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
25 33 33 33 33     and    $0x33333333,%eax 
8b 7d fc           mov    -0x4(%rbp),%edi 
c1 ef 02           shr    $0x2,%edi 
81 e7 33 33 33 33  and    $0x33333333,%edi 
01 f8              add    %edi,%eax 
89 45 fc           mov    %eax,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
8b 7d fc           mov    -0x4(%rbp),%edi 
c1 ef 04           shr    $0x4,%edi 
01 f8              add    %edi,%eax 
25 0f 0f 0f 0f     and    $0xf0f0f0f,%eax 
69 c0 01 01 01 01  imul   $0x1010101,%eax,%eax 
c1 e8 18           shr    $0x18,%eax 
89 45 fc           mov    %eax,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
5d                 pop    %rbp 
c3                 retq  

Functional Correctness: 
RAX = popcount(v)

specification function

popcount(v): 

if (v <= 0) then 
   return 0 
else 
   lsb := v & 1 
   v   := v >> 1 
   return (lsb + popcount(v)) 
endif

int popcount_32 (unsigned int v) 
{ 
  // From Sean Anderson’s Bit-Twiddling Hacks 
  v = v - ((v >> 1) & 0x55555555); 
  v = (v & 0x33333333) + ((v >> 2) & 0x33333333); 
  v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; 
  return(v); 
}
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Application Program #2: word-count
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The word-count program reads input from the stdin using read system 
calls. System calls are non-deterministic for application programs. 
[FMCAD’14]

Resource Usage: Irrespective of the input, program uses a fixed amount 
of memory.

Security: Program does not modify unintended regions of memory.

Functional Correctness: Values computed by specification functions on 
standard input are found in the expected memory locations of the final x86 
state.



/2720

System Program: zero-copy

xl0

Virtual  
Memory

xl1

xp

Physical 
Memory

Specification:  
Copy data x from virtual memory location l0 to 
disjoint virtual memory location l1.

Verification Objective:  
After a successful copy, l0 and l1 contain x.

Implementation:  
Include the copy-on-write technique: l0 and l1 
can be mapped to the same physical memory 
location p. 

‣ Modifications to address mapping
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Address Translations: IA-32e Paging (1G page)

CR3

PML4E

PDPTE

Physical
Memory

PML4 Dir. Ptr. Offset

Linear Address

Physical Addr.

1G Page

a accessed flag d dirty flag

a

a

d
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For simplicity, marking of x86 paging structures during traversal was turned 
off, i.e., no accessed and dirty bit updates were allowed. 

We are currently re-doing this proof to account for updates to accessed and 
dirty bits.

Functional Correctness: implementation of a zero-copy program meets 
the specification of a simple copy operation.

System Program: zero-copy
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Outline

๏ Motivation 

๏ Project Description 

➡ [1] Developing an x86 ISA Model 

➡ [2] Building a Machine-Code Analysis Framework 

➡ [3] Verifying Application and System Programs 

๏ Future Work & Conclusion
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Contributions
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A new tool  
‣ General-purpose analysis framework for x86 machine-code 
‣ Accurate x86 ISA reference

Reasoning strategies 
‣ Insight into low-level code verification in general 
‣ Build effective lemma libraries

Perform program verification cognizant of low-level ISA features 
‣ E.g., properties of x86 memory-management data structures

Foundation for future research 
‣ Resource usage guarantees, information-flow analysis, etc.
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Long-Term Goals
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• Run a 64-bit                           kernel on our x86 ISA model 
- This involves identifying and implementing relevant instructions, call 

gates, supporting task management, etc. 

• Identify and prove critical invariants in kernel code 
- This includes proving the correctness of context switches, privilege 

escalations, etc. 

• Add multiprocessor support to the x86 ISA model
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Accessing Source Code + Documentation
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The x86isa project is available under BSD 3-Clause 
license as a part of the ACL2 Community Books project.  

Go to https://github.com/acl2/acl2/ 
and see books/projects/x86isa/README for details.

www.cs.utexas.edu/users/moore/acl2/manuals/
current/manual/?topic=ACL2____X86ISA 

Also, documentation and user’s manual is 
available online  at

https://github.com/acl2/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA
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Highlights of this Talk
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Unified Model 
- Simulator: Executable file readers & loaders; GDB-like mode for 

dynamic instrumentation 
- Reasoning Framework: ACL2 libraries to reason about x86 machine 

code

Compile-to and Build-to Specification 
A formal, executable x86 ISA model 
- Specification of low-level ISA features 
- Handles non-determinism

User Manual 
- Documentation

Open Source 
- Available online


