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Introduction

DE is a formal occurrence-oriented description language that permits the
hierarchical definition of finite-state machines in the style of a hardware
description language [W. Hunt, 2000].

DE has shown to be a valuable tool in formal specification and verification
of modern hardware designs [W. Hunt & E. Reeber, 2006].

In this talk, I will give an overview of the DE language, illustrate how to
use it to formally specify and verify circuit designs via simple examples,
and finally briefly describe its application in the FM9001 microprocessor
verification.
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The DE Language

DE is a hierarchical, occurrence-oriented simulator for Mealy machines. It
allows hierarchical module definition, and multiple copies of a module are
identified by reference (their appearance in an occurrence).

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and
inputs.
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Half-Adder

(defconst *half-adder*
’((half-adder ;; module name

(a b) ;; module inputs
(sum carry) ;; module outputs
() ;; internal states
;; occurrences

((g0 ;; occurrence name
(sum) ;; occurrence outputs
b-xor ;; a primitive reference
(a b)) ;; occurrence inputs

(g1 (carry) b-and (a b))))))
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The DE Primitive Database

The evaluation of a DE netlist eventually results in the interpretation of
primitives, which are specified in the DE primitive database.

Logic gates: AND, OR, NOT, XOR,...
State-holding primitives: latches, flip-flops,...
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Full-Adder
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Full-Adder

(defconst *full-adder*
(cons
’(full-adder

(a b c)
(sum carry)
()
((t0 (sum1 carry1) half-adder (a b))
(t1 (sum carry2) half-adder (sum1 c))
(t2 (carry) b-or (carry1 carry2))))

*half-adder*))
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One-Bit Counter
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One-Bit Counter

(defconst *one-bit-counter*
(cons
’(one-bit-counter

(clk carry-in reset-)
(out carry)
(g0)
((g0 (out out˜) fd1 (clk sum-reset-))
(g1 (sum carry) half-adder (carry-in out))
(g2 (sum-reset-) b-and (sum reset-))))

*half-adder*))

Cuong Chau (UT Austin) The DE Language September 22, 2016 12 / 28



Four-Bit Counter
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Four-Bit Counter

(defconst *four-bit-counter*
(cons
’(four-bit-counter

(clk incr reset-)
(out0 out1 out2 out3)
(h0 h1 h2 h3)
((h0 (out0 carry0) one-bit-counter (clk incr reset-))
(h1 (out1 carry1) one-bit-counter (clk carry0 reset-))
(h2 (out2 carry2) one-bit-counter (clk carry1 reset-))
(h3 (out3 carry3) one-bit-counter (clk carry2 reset-))
))

*one-bit-counter*))
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The DE Simulator

The semantics of the DE language is given by a simulator that, given the
current inputs and current state for a module, will compute the module’s
outputs and next state.

The DE simulator is composed of two sets of mutually recursive functions.

The se function computes the outputs of a module being evaluated
given its inputs and its current state. The se-occ function, which is
mutually recursive with se, iteratively computes the outputs of each
occurrence declared in a module.
The de function computes the next state of a module being
evaluated given its inputs and its current state. The de-occ function,
which is mutually recursive with de, iteratively computes the (possibly
empty) next state of each occurrence declared in a module.

Demo.
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Verifying DE-Specified Circuits

Each time a module is specified, there are two lemmas need to be proven:
a value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational), only the
value lemma needs to be proven.

These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details
about the submodules.

Demo.
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Circuit Generator Verification

The DE verification system can be applied to verify circuit generators.
Example: proving the correctness of a parameterized ripple-carry adder.

(defun v-adder (c a b)
(declare (xargs :guard (and (true-listp a)

(true-listp b))))
;; c is a bit, a and b are bit-vectors of some length n;
;; this function returns a bit vector of length n+1.

(if (atom a)
(list (bool-fix c))

(cons (b-xor3 c (car a) (car b))
(v-adder (b-or3 (b-and (car a) (car b))

(b-and (car a) c)
(b-and (car b) c))

(cdr a)
(cdr b)))))

Demo.
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FM9001 Microprocessor

The FM9001 is a general-purpose 32-bit microprocessor whose gate-level
netlist was specified using the DUAL-EVAL hardware description
language [B. Brock & W. Hunt, 1997].

The correctness of the FM9001 gate-level design was verified using the
NQTHM theorem-proving system [B. Brock & W. Hunt, 1997].

We have been re-specifying and re-verifying the correctness of the FM9001
design using the ACL2-based DE system.
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FM9001 Specification Levels
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FM9001 Verification

The proof of correctness of the FM9001 gate-level design consists of three
major lemmas:

1 The FM9001 can be forced to a known state, i.e., reset, by a suitable
sequence of inputs.

2 Given a set of initial conditions, the gate-level model correctly
implements the high-level instruction interpreter.

3 The state at the end of the reset sequence satisfies the initial
conditions for the previous lemma.

Our result so far: proved that given a set of initial conditions, the
gate-level model correctly implements the register-transfer model.
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Block Diagram of the FM9001
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The NEXT-CNTL-STATE module
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Future Work

Finish the proof of correctness of the FM9001 gate-level design, i.e., the
three major lemmas mentioned earlier.

Specify and verify the correctness of the FM9001 using the
asynchronous-circuit-oriented formalization.

No global clock signal.
Local communication protocols, e.g., the link-joint
interface [M. Roncken et al., 2015].
Non-deterministic behavior due to uncertain but bounded delays on
wires and gates.
...
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Questions?
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