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ABSTRACT

I’ll present a case study, consisting of a sequence of verified
checkers that validate SAT proofs. These culminate in an
efficient checker that can be used in SAT competitions and in
industry. No background in SAT is assumed.
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INTRODUCTION

Questions welcome during the talk, feedback afterwards.

Feel free to slow me down (will move quickly through early
stuff that is probably familiar to all).

Brief summary of talk:

I Nathan Wetzler wrote and verified an ACL2 program that
validates SAT proofs.

I This talk discusses development of an efficient such
verified checker.

Underlining denotes links to the ACL2+books online manual.
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THE PROBLEM

Boolean Satisfiability (SAT) solvers are proliferating and useful.

But how can we trust them?

Modern ones [3] emit proofs!

But how do we know that these “proofs” are valid?

We check them with software programs called checkers!

But how do we know that a checker is sound? Inspection?

I Checkers are typically simpler than solvers...
I ... but not that simple, and inspection is error-prone.
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TOWARDS A SOLUTION

Nathan Wetzler, under the direction of Marijn Heule and
Warren Hunt, developed an ACL2-based solution [6, 5, 4].

He wrote a SAT proof-checker in ACL2, then formalized and
proved its correctness (soundness):

Suppose the checker takes inputs Π (an alleged
proof) and F (a formula), and checks that Π legally
derives a contradiction from F.

Then F is always false.

Background:
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VARIABLES, LITERALS, CLAUSES, FORMULAS

A variable is a propositional atom.

I Traditionally, a Boolean formula might be P1 ∧ ¬P2, where
P1 and P2 are symbols known as variables.

I For us, variables are positive integers.

A literal is a variable or its negative (negation), e.g., 3 or -3.

Complementary literals are negations of each other.

A clause is a set of literals, implicitly disjoined, containing no
complementary literals.

I In ACL2: duplicate-free lists of non-zero integers without
complementary literals. Example: (3 7 -2 4).

A formula is a set (or list) of clauses, implicitly conjoined.
(This is commonly called conjunctive normal form.)
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SEMANTICS: ASSIGNMENTS AND TRUTH

An assignment is a finite function mapping variables to
Booleans.

I In ACL2: same representation as for clauses, e.g.,
(3 7 -2 4) but not (3 7 -3).

Truth value under an assignment: recursively defined for literals,
then clauses, then formulas, to be T, NIL, or 0 (unknown).

Example: Is F true under assignment a?
F: ((1 7 -2) (-3 -5 6) (9 2 3))
a: (7 -3)

Answer: No — the truth value is 0 because of the third clause.

A formula is satisfiable if it is true under some assignment;
otherwise, it is unsatisfiable.
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PROOFS

A proof (or clausal proof, or refutation) for a formula F is a
sequence Π = 〈p1, p2, ..., pk〉 such that:

I Each pi is 〈bi, ci〉, where bi is a Boolean and ci is a clause.
Deletion step: bi is true
Addition step: bi is false

I bk is false and ck is the empty clause.

I All addition steps preserve satisfiability (see next slide).
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PROOFS (2)

For Π = 〈p1, p2, ..., pk〉 as above, recursively define formulas
〈F0,F1, ...,Fk〉 by executing the pi:

I F0 = F.
I For i > 0 and bi true, delete ci from Fi−1 to get Fi.
I For i > 0 and bi false, add ci to Fi−1 to get Fi.

Then Π preserves satisfiability when for each addition step pi, if
Fi−1 is satisfiable then Fi is satisfiable.
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PROOFS (3)

NOTE: The definition above of clausal proof is very general. A
checker may impose more specific syntactic requirements that
guarantee the property.

The next slide shows Nathan’s formalization, for ITP 2013,
based on the RAT (Resolution Asymmetric Tautology) check.
Details on RAT are not the subject of today’s talk.

All checkers discussed today use a formalization like the one
on the next slide, based on RAT.
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FORMALIZING SOUNDNESS
Below, proofp is a recognizer for proofs, and solutionp
checks that a formula is true under a given assignment,

(defun refutationp (proof formula)
(declare (xargs :guard (formulap formula)))
(and (proofp proof formula)

(member *empty-clause* proof)))

(defun-sk exists-solution (formula)
(exists assignment

(solutionp assignment formula)))

(defthm main-theorem
(implies (and (formulap formula)

(refutationp clause-list formula))
(not (exists-solution formula))))
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FORMALIZING SOUNDNESS (2)

The following is easily proved by induction.

Lemma. Suppose that Π = 〈p1, p2, ..., pk〉 is a proof and F0 is
satisfiable. Then each Fi is satisfiable.

Soundness argument:

1. Deletion steps clearly preserve satisfiability.
2. Addition steps preserve satisfiability. [Must be proved!]
3. By the lemma, if F0 is satisfiable then Fk is satisfiable.
4. Since pk adds the empty clause, Fk is unsatisfiable.
5. It follows immediately that F0 is unsatisfiable.
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EFFICIENT PROOF-CHECKING
HOWEVER: Nathan’s ITP 2013 checker, discussed above, was
intended to be a proof of concept, not an efficient tool.

(I have since learned of a later checker in Nathan’s dissertation that,
like our [lrat-4] discussed below, used stobjs for assignments. It did
not use deletion or fast-alists, or claim efficiency. This talk does not
mention that checker further.)
On one example:

I Marijns’s checker: 1.5 seconds
I Nathan’s (ITP 2013) checker: 1 week

Marijn’s request: a formally verified checker for SAT
competitions
This talk tells the (true) story of the development of such a
checker.

I Its efficiency benefits in part from some techniques not yet
invented at the time of Nathan’s work.
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EFFICIENT PROOF-CHECKING (2)

The flow for efficient, verified SAT proof-checking:

1. SAT solver verifies unsatisfiability of formula F; generates
alleged proof, Π0.

2. DRAT-trim [2] takes inputs Π0 and F; outputs alleged proof
Π1 for checker, in a format amenable to efficient checking.

3. Verified ACL2 checker validates that Π1 is a proof for F.
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A SEQUENCE OF CHECKERS

This table shows times (in seconds) for some checker runs, on
examples provided by Marijn.

test [rat] [drat] [lrat-1] [lrat-2] [lrat-3] [lrat-4]
(Wetzler) (deletion) (fast-alist) (shrink) (clean up) (stobjs)

uuf-100-3 20.64 8.59 0.01 0.01 0.01 0.00
tph6[-dd] - - 6.18 0.56 0.54 0.46
R_4_4_18 ∼1 week - 217.91 9.62 3.21 2.56
transform - - 47.80 9.59 8.82 8.77
schur - - 4674.18 1872.07 1884.23 246.94

Times do not include parsing. Warren Hunt has sped up our
original parser, and there are plans to speed it up further by
using a binary proof format (not discussed further here).
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A SEQUENCE OF CHECKERS (2)

How this work progressed (will elaborate on the next slides).

1. [rat] Nathan’s ITP 2013 RAT checker: no deletion
2. [drat] Added deletion (thus implementing DRAT)
3. [lrat-1] Avoid search and delete clauses efficiently, using

fast-alists (applicative hash tables) and a linear proof
format, and with soundness proved from scratch

4. [lrat-2] Shrink fast-alists to keep the formulas Fi small
5. [lrat-3] Minor tweak to formula data-structure
6. [lrat-4] Added stobjs for assignments

19/49

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAST-ALISTS
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A SEQUENCE OF CHECKERS (3)
Acknowledgments:

I Marijn helped a lot with getting us up to speed on SAT
proof-checking based on RAT, and by supplying examples.

I Warren worked with me in the initial stages.
I Of course, many ACL2 features were crucial, including

proof procedures (many inherited from earlier
Boyer-Moore provers) and fast-alists (initially
Boyer/Hunt, later Davis/Swords).

Profiling (Marijn’s suggestion) helped with discovering
bottlenecks:

(include-book "centaur/memoize/old/profile"
:dir :system)

(profile-all) ; or just profile specific functions
<evaluate forms>
(memsum)
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A SEQUENCE OF CHECKERS (4)

This project illustrates the interplay between ACL2 as a
programming language and as a theorem prover:

I Optimize the program for efficiency.

I Deal with proving correctness for the optimizations.
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[drat]

Incorporating deletion was straightforward.

I In [rat], a proof is a list of clauses to be added (no deletion).
I A [drat] proof is a list of pairs 〈b, c〉— in ACL2, (b . c),

where b is a Boolean deletion flag and c is a clause.
I Warren and I easily modified Nathan’s ITP 2013 proof.

Deletion should help with speed by keeping the formulas Fi
small.

But the [drat] checker is still slow. Why?
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[drat]: WHY IT’S SLOW

I Unit propagation (UP) results in many linear searches
through Fi.

I Deletion does a linear search and much consing.
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THE LRAT PROOF FORMAT

Marijn, with others, has developed a Linear RAT (LRAT) proof
format.[1]

I “Others” includes 2 Coq users who have also developed a
verified SAT proof-checker.

I Theirs takes 10 minutes on one example compared to our 9
seconds.

Example LRAT proof step pi:

820 -59 -17 -58 0 807 246 423 40 -87 308 117 819 809 404 310 -163 -313 0

The next slide breaks this line apart.
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INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION REFERENCES

The clause to be added has index 820:
820

It is the set of literals, {-59 -17 -58}:
-59 -17 -58

Separator:
0

Apply unit propagation (UP) to these four clauses, in order:
807 246 423 40

For the RAT check on clause 87, restrict UP to the clauses
308, 117, ..., and 310, in order.

For the RAT check on clause 163, no UP is performed.
For the RAT check on clause 313, no UP is performed.
-87 308 117 819 809 404 310 -163 -313

End of proof step:
0
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INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION REFERENCES

THE LRAT PROOF FORMAT (THE BIG TAKE-AWAY)

Hints direct exactly where unit propagation is done – no search!

This addresses the first of the two “Why It’s Slow” problems.
Again:

I Unit propagation (UP) results in many linear searches
through Fi.

I Deletion does a linear search and much consing.

Clause indices help solve the second problem.

The next checker implements these efficiencies.
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INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION REFERENCES

[lrat-1]

I Proof steps represent the LRAT format.

I A formula represents a list of pairs (i . c) where i is a
natural number, the index of clause c.

I This list is a fast-alist: ACL2 uses a hash-table to find c from
i in essentially constant time.

I A formula is a pair (max . fal), where fal is its
fast-alist and max is an upper bound on its indices.
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INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION REFERENCES

[lrat-1] (2)

How do fast-alists help with efficiency?

I Unit propagation benefits from fast lookup to obtain a
clause from its index; and

I Deletion of clause i simply extends the fast-alist with a pair
(i . *deleted-clause*).

I The value of *deleted-clause* is a non-nil atom,
hence not a clause.
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INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION REFERENCES

[lrat-1] (3)

Soundness Proof Problem:
How to manage the substantial change from [drat] to [lrat-1].

I Painful to rework another’s proof

I Decision: Sketch hand proof and manage a fresh proof

I Used top-down approach (see my 1999 ACL2 Workshop
paper)
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satisfiable-add-proof-clause.lisp

<hand proof in comment>
(in-package "ACL2")
(include-book "lrat-checker")

(local (encapsulate ()
(local (include-book "satisfiable-add-proof-clause-rup"))
(local (include-book "satisfiable-add-proof-clause-drat"))
(set-enforce-redundancy t)
(defthm satisfiable-add-proof-clause-rup

...)
(defthm satisfiable-add-proof-clause-drat

...)))

(defthm satisfiable-add-proof-clause
...
:hints
(("Goal" :use (satisfiable-add-proof-clause-rup

satisfiable-add-proof-clause-drat)
:in-theory (union-theories ’(verify-clause)

(theory ’minimal-theory)))))
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[lrat-2]

Profiling showed 69% of the time inside hons-get (looking up
clause indices).

The RAT check visits every clause in the formula Fi.

The [lrat-2] checker improves on [lrat-1] in two ways:

I Shrink the formula’s fast-alist when heuristics say to do so.

I RAT check recurs through the fast-alist instead of recurring
down from the max index.
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INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION REFERENCES

[lrat-2]: SHRINKING

Two counts maintained on the formula:

I ndel: number of pairs (i . *deleted-clause*)

I ncls; the number of pairs (i . c) representing clauses
that have not been deleted

Heuristically shrink the fast-alist at an addition proof step,
based on experimentation:

I whenever ndel > 10 ∗ ncls;

I when RAT check is necessary, shrink first if
ndel > 1/3 ∗ ncls.
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To shrink a fast-alist (will discuss only if time):

(defun remove-deleted-clauses (fal acc)
(declare (xargs :guard (alistp fal)))
(cond ((endp fal) (make-fast-alist acc))

(t (remove-deleted-clauses
(cdr fal)
(if (deleted-clause-p (cdar fal))

acc
(cons (car fal) acc))))))

(defund shrink-formula-fal (fal)
(declare (xargs :guard (formula-fal-p fal)))
(let ((fal2 (fast-alist-clean fal)))
(fast-alist-free-on-exit
fal2
(remove-deleted-clauses fal2 nil))))
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[lrat-2]: PROOF

Proved soundness by tweaking the [lrat-1] proof:

I Disabled the top-level “maybe shrink” function

I Re-ran the [lrat-1] proof on [lrat-2]

I Looked at key checkpoints on failure to determine lemmas
to prove (about shrinking).
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INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION REFERENCES

[lrat-3]

Changed formula from (max . fal) to simply fal.

I Max was only used for RAT check recursion, but [lrat-2]
recurs through fal.

I This simplification seemed useful before starting the next
checker, and it saves consing.

I Soundness proof for [lrat-2] was easy to modify for [lrat-3].
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INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION REFERENCES

[lrat-4]

A bottleneck in [lrat-3]: evaluation of a literal n requires a
linear-time search for either n or −n in the assignment.

[lrat-4] solution: use single-threaded objects (stobjs) to model
assignments.

I Lookup is a constant-time array reference.

I Avoids memory allocation (consing) when pushing new
literals onto assignment.

36/49
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[lrat-4]: ASSIGNMENTS

(defstobj a$
(a$ptr :type (integer 0 *) ; stack pointer

:initially 0)
(a$stk :type (array t (1)) ; stack of a$arr indices

:resizable t)
(a$arr :type (array t (1)) ; array of 0, t, nil

:initially 0
:resizable t)

:renaming ((a$arrp a$arrp-weak)
(a$p a$p-weak)))
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[lrat-4]: ASSIGNMENTS (2)

Operations on assignments:

I (push-literal lit a$) extends assignment a$ with
literal lit (writes to a$stk, increments a$ptr).

I (pop-literals ptr a$) updates a$ptr to ptr.

KEY OBSERVATION: These operations generate calls to nth
and update-nth, but for [lrat-3], they are implemented with
cons and cdr.

Tweaking the [lrat-3] proof seemed difficult! Instead....
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[lrat-4]: PROOF

I I proved correspondence theorems relating [lrat-3] functions
to [lrat-4] functions.

I Then I derived the soundness of [lrat-4] directly from those
correspondence theorems and the soundness of [lrat-3].
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(defthm main-theorem-list-based
(implies (and (formula-p formula)

(refutation-p proof formula))
(not (satisfiable formula)))

:hints ...)

(defthm refutation-p-equiv
(implies (and (formula-p formula)

(refutation-p$ proof formula))
(refutation-p proof formula)))

(defthm main-theorem-stobj-based
(implies (and (formula-p formula)

(refutation-p$ proof formula))
(not (satisfiable formula)))

:hints (("Goal"
:in-theory ’(refutation-p-equiv)
:use main-theorem-list-based))) 40/49
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[lrat-4]: PROOF (3)

All of these checkers are guard-verified, for runtime efficiency.

For that, needed invariant on the stobj that is preserved when a
function returns a modified stobj.

1. Developed that invariant, (a$p a$)

2. Verified guards (perhaps easier than correspondence
theorems), which required invariance proofs

3. Proved correspondence theorems
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[lrat-4]: PROOF (4)

I’ll very briefly discuss the invariant:

(defun a$p (a$)
(declare (xargs :stobjs a$))
(and (a$p-weak a$)

(<= (a$ptr a$) (a$stk-length a$))
(equal (a$arr-length a$)

(1+ (a$stk-length a$)))
(good-stk-p (a$ptr a$) a$)
(a$arrp a$)
(arr-matches-stk (a$arr-length a$) a$)))
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[lrat-4]: PROOF (5)
A challenge: The correspondence proofs broke down!

I Two [lrat-3] functions, unit-propagation and
rat-assignment, match up nicely with corresponding
[lrat-4] functions.

I One [lrat-3] function, negate-clause-or-assignment,
did not match up with its corresponding [lrat-4] function.

The [lrat-2] function (originally used in [lrat-3]):

(defun negate-clause-or-assignment (clause)
(declare (xargs :guard (clause-or-assignment-p clause)))
(if (atom clause)

nil
(cons (negate (car clause))

(negate-clause-or-assignment (cdr clause)))))
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[lrat-4]: PROOF (6)

What to do? Status when problem was discovered:

I Soundness for [lrat-3] was already established
I Guards for [lrat-4] were already verified.
I Some equivalence proofs were complete.

Solution: Modified [lrat-3] by changing the definition of
function negate-clause-or-assignment and fixing failed
proofs.

Then completed correspondence theorems, which yielded
soundness for [lrat-4].
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CONCLUSION
There is now an efficient formally verified SAT checker!

I On a large example, its time of 4.1 minutes (without
parsing) compares very favorably with DRAT-trim time of
20 minutes (with very fast C parsing).

I Warren is working on a faster parser (it takes about 20
minutes with mine, which is based on read-object).

Checkers [lrat-3] and [lrat-4] are in the community books in
these directories, respectively.

projects/sat/lrat/list-based/
projects/sat/lrat/stobj-based/

Other checkers are available via links from the seminar page.
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REFERENCES

This work can be found in the community books, with the
latest version on github:

books/projects/sat/lrat/

Nathan Wetzler’s ITP 2013 and dissertation checkers can also
be found in the community books:

books/projects/sat/proof-checker-itp13/
books/projects/sat/proof-checker-array/

The next slide has references for citations in this talk.
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