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Topic of the Talk

This talk is about our work during the last four months.

Our work centered around proofs for SAT and QBF. It resulted
in two papers and one abstract:

Marijn J.H. Heule, Benjamin Kiesl, and Armin Biere:

Short Proofs Without New Variables
(Accepted at CADE)

Benjamin Kiesl, Marijn J.H. Heule, and Martina Seidl:

A Little Blocked Literal Goes a Long Way
(Submitted to SAT)

Marijn J.H. Heule and Benjamin Kiesl:

The Potential of Interference-Based Proof Systems
(Extended Abstract, Submitted to the ARCADE workshop)
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Outline

Overview on SAT and corresponding proofs.

• What are proofs and why do we care about them?

Short summary of our first paper:

• In the paper, we introduce new proof systems for SAT solving.

Short summary of our second paper:

• We show how two important proof systems for QBF are related.
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The Satisfiability Problem of Propositional Logic (SAT)

Given a propositional formula in conjunctive normal form, is it
satisfiable?

A literal is a variable x or the negation x̄ of a variable x.

A clause is a disjunction l1 ∨ · · · ∨ ln of literals.

A formula (in CNF) is a conjunction C1 ∧ · · · ∧ Cn of clauses.

Example:

(a ∨ b̄) ∧ (c) ∧ (ā ∨ c̄)
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The Satisfiability Problem of Propositional Logic (SAT)

A (truth) assignment is a mapping from variables to the truth
values 0 (false) and 1 (true).

An assignment τ satisfies . . .

• . . . a variable x if τ(x) = 1.

• . . . a literal l if l = x and τ(x) = 1, or l = x̄ and τ(x) = 0.

• . . . a clause if it satisfies at least one literal in the clause.

• . . . a formula if it satisfies all its clauses.

å SAT:

• Given a formula F , does there exist an assignment that satisfies F?
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The Satisfiability Problem of Propositional Logic (SAT)

6 / 29

(x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

{
x ∨ y , x̄ ∨ ȳ , z ∨ z̄

}{
{x , y}, {x̄ , ȳ}, {z , z̄}

}

Input FormulaFormulas can be seen as sets of clausesClauses can be seen as sets of literals
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}{
{x , y}, {x̄ , ȳ}, {z , z̄}
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Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment:

xȳz

(x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

Certifying unsatisfiability is not so easy:

• If a formula has n variables, there are 2n possible assignments.

å Checking whether every assignment falsifies the formula is costly.

• More compact certificates of unsatisfiability are desirable.

å Proofs

7 / 29



Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment:

xȳz
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(x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)
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What Is a Proof in SAT?

In general, a proof is a string that certifies the unsatisfiability of
a formula.

• Proofs are efficiently (usually polynomial-time) checkable

(but
can be of exponential size with respect to a formula)

Example: Resolution proofs

• A resolution proof is a sequence C1, . . . ,Cn of clauses.

• Every clause is either contained in the formula or derived from
two earlier clauses via the resolution rule:

C ∨ l l̄ ∨ D
C ∨ D

• Cn is the empty clause (containing no literals).

• There exists a resolution proof for every unsatisfiable formula.
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Resolution Proofs

Example: F = (x̄ ∨ ȳ ∨ z) ∧ (z̄) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u)

Resolution proof:
(x̄ ∨ ȳ ∨ z), (z̄), (x̄ ∨ ȳ), (x ∨ ȳ), (ȳ), (ū ∨ y), (ū), (u), ∅

ū ∨ y

x̄ ∨ ȳ ∨ z z̄
x̄ ∨ ȳ x ∨ ȳ

ȳ
ū u

∅

Drawbacks of resolution:

• For many seemingly simple formulas, there are only resolution
proofs of exponential size.

• State-of-the-art solving techniques are not succinctly expressible.
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ū u

∅
Drawbacks of resolution:

• For many seemingly simple formulas, there are only resolution
proofs of exponential size.

• State-of-the-art solving techniques are not succinctly expressible.

9 / 29



Resolution Proofs
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ȳ
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Properties of a Desirable Proof System for SAT

1. Succinctness: Proofs of unsatisfiability should be short strings
that certify the unsatisfiability of formulas.

2. Efficient Checkability: It should be easy to verify that a proof is
correct, i.e., that it certifies the unsatisfiability of a formula.

3. Practicability: SAT solvers should be able to produce proofs.

å State-of-the-art techniques should be expressible in the system.

4. (Soundness and completeness.)
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Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
implied by the premises.

C ∨ l l̄ ∨ D (res)
C ∨ D

A A→ B (mp)
B

å When inferring something, we reason about the presence of
facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.
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Interference-Based Proof Systems

Interference-based proof systems generalize traditional proof
systems.

An interference-based proof is a sequence of clauses.

• Idea: The clauses are added to the initial formula step-by-step.

• Added clauses need not be implied, but their addition must
preserve satisfiability:

å If the formula is satisfiable, then the formula obtained by adding
the clause is also satisfiable.

å If the (unsatisfiable) empty clause, ∅, can be added, then the
original formula must be unsatisfiable.

I The empty clause is unsatisfiable because it has no literal that
could be true.
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Interference-Based Proofs

Formula

≡ ≡ ≡ ≡

∅

∅

Proof

It should be efficiently checkable whether clause additions preserve satisfiability.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently checkable

redundancy criterion.

• Example: Addition of resolution asymmetric tautologies (RATs).
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DRAT: An Interference-Based Proof System

Popular example of an interference-based proof system: DRAT

DRAT allows the addition of so-called resolution asymmetric
tautologies (RATs) to a formula (whatever that means).

• It can be efficiently checked if a clause is a RAT.

• RATs are not necessarily implied by the formula.

• But RATs are redundant: their addition preserves satisfiability.

• A RAT check involves reasoning about the absence of facts.

I A clause is a RAT w.r.t. a formula if the formula contains no
clause such that . . .

Are there more general types of redundant clauses than RATs?
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Redundant Clauses

Strong proof systems allow the addition of many redundant
clauses.

All Redundant Clauses

Are there stronger redundancy notions that are efficiently
checkable?

å Short Proofs Without New Variables
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Short Proofs Without New Variables: Main Contributions

We introduced new clause-redundancy notions:

• Propagation-redundant (PR) clauses

• Set-propagation-redundant (SPR) clauses

• Literal-propagation-redundant (LPR) clauses

LPR clauses coincide with RAT.

SPR clauses strictly generalize RATs.

PR clauses strictly generalize SPR clauses.

The redundancy notions provide the basis for new proof systems.
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New Landscape of Redundancy Notions

SAT-EQ

PR SPR LPR

RAT

RS

BCSET

RUP

EQ

S

new

satisfiability

equivalence

logical

equivalence
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Stronger Proof Systems: What Are They Good For?

The new proof systems can give short proofs of formulas that are
considered hard.

We have short SPR and PR proofs for the well-known pigeon
hole formulas.

• Pigeon hole formulas have only exponential-size resolution proofs.

• If the addition of new variables via definitions is allowed, there are
polynomial-size proofs.

I So-called extended resolution proofs.

Our proofs do not require new variables.

å Search space of possible clauses is finite.

å Makes search for such clauses easier.
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A Little Blocked Literal Goes a Long Way: Overview

Deals with proofs for quantified Boolean formulas (QBFs).

Short overview on QBF and corresponding proof systems.

We show that QRAT (the QBF generalization of DRAT) can
polynomially simulate long-distance resolution.

We have an implementation and evaluation of the simulation.
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∀x∃y∀z (x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

“For every truth value of x ,

does there exist a truth value of y ,

such that . . . ”
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xx

y

z z̄
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xx

y

z z̄
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Proof Systems for QBF: LQ-Res vs. QRAT

Proof systems for QBF are similar to proof systems for SAT.

There are several resolution systems.

Most popular system: long-distance resolution (LQ-Res)

• Allows for short proofs both in theory and in practical solving.

Other approach: QRAT (interference-based!)

• QRAT is the QBF generalization of RAT.

• Perfect for certifying the correctness of the preprocessing.

It was unclear how LQ-Res and QRAT are related.

• If there is a short LQ-Res proof of a QBF, is there also a short
QRAT proof?

• Short = polynomial with respect to the size of the formula.

• Our answer: Yes!
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Simulating LQ-Res With QRAT

How to show that there is a short QRAT proof for every short
LQ-Res proof?

å Answer: With a simulation procedure.

• Takes as input an LQ-Res proof and transforms it into a short
QRAT proof.

LQ-Res proof

QRAT proof
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Simulation Procedure: Results

Our simulation procedure produces a QRAT proof with at most
a quadratic blow-up in size.

We implemented the procedure, the tool is called ld2qrat.

• Takes a long-distance proof in the so-called QPR format.

• Outputs a QRAT proof.

• Several optimizations to reduce proof size.

• Resulting proofs are reasonably short.

With the tool it is now possible to merge a QRAT proof of a
preprocessor with a long-distance proof of a search-based solver.
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Simulation Procedure: Results

Our simulation also gave insight for constructing short QRAT
proofs by hand.

• Formulas well-known for having short LQ-Res proofs but being
hard for other proof systems: Kleine Büning formulas

• We have hand-crafted QRAT proofs of these formulas that are
shorter than the LQ-Res proofs.
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New Proof-Complexity Landscape for QBF

Q-Res

LQ-Res

QU-Res

QRAT

LQU+-Res

?

Open question: Can QRAT also simulate LQU+-Res, a system
that is stronger than LQ-Res?
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A Little Blocked Literal . . . : Conclusion

We shed light on the relationship between LQ-Res and QRAT

• LQ-Res is a popular system for QBF solving.

• QRAT is the best system for QBF preprocessing.

QRAT turns out to be stronger than LQ-Res.

Our new tool allows to transform LQ-Res proofs into QRAT
proofs.
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But I did not spend my whole time writing papers. (Fortunately.)
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Found A Fantastic Collaborator/Supervisor

/Friend
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Had Also a Lot of Fun With His Husband
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Lived Together With Magnificent Roommates
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Had a Great Time With Lindy and Devon
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And Last But Not Least: Met a Cool Group!
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