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What	is	Fourier	Transform?

• 3	main	types:
• Continuous	Time	Fourier	Transform	(CTFT)

• Input:	Continuous,	Output:	Continuous
• Discrete	Time	Fourier	Transform	(DTFT)

• Input:	Discrete,							Output:	Continuous
• Discrete	Fourier	Transform	(DFT)

• Input:	Discrete,								Output:	Discrete

• Decomposition	of	a	signal	into	the	frequencies	that	make	it	up
• Applications	include:
• Differential/Difference	Eqs,	Filter	Design,	Speech	Recognition,	Fast	Large	
Integer	Multiplication…

• The	one	we	are	interested	in
• Fast	Fourier	Transform	(FFT):	some	efficient	algorithms	to	compute	DFT
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What	is	Discrete	Fourier	Transform	(DFT)?
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Inverse	DFT	(IDFT)

x:		input	vector	of	finite	length	N
xm:	mth element	of	x
X:	output	vector	of	the	same	length	N
Xk:	kth element	of	X
j:	square	root	of	-1	

DFT	Implementation:
• Calculate	the	sum	over	m from	0	to	N-1	for	every	k	in	[0	N-1]
• Time	complexity	of	O(N2)
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What	is	Fast	Fourier	Transform	(FFT)?
• An	efficient	implementation	of	DFT
• Two	most	commonly	known	ways:
• Decimation-in-time	(DIT)
• Decimation-in-frequency	(DIF)

• Restriction:	vector	length	N	should	be	power	of	2.	If	not,	fill	with	0s.
• A	recursive	algorithm	
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What	is	Fast	Fourier	Transform	(FFT)?
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• where	𝑊,
& =	𝑒()*+&/,

• Decimation-in-time
• Recursive	definition	with	

base	N=2
• N=2	step	is	also	called	

butterfly	step
• Time	complexity	of	

O(Nlog(N))



Work	Done	in	ACL2
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• DFT	Implementation
• Proof	for	(idft (dft x	N)	N)	=	x

• FFT	decimation-in-time	implementation
• Proof	for	(fft x	N)	=	(dft x	N)



DFT	Implementation	in	ACL2
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Proof	for	IDFT	of	DFT	of	X	is	X

Goal:
Prove	that	inverse	DFT	of	DFT	of	a	vector	gives	the	original	vector.	
i.e.	(idft (dft x))	=	x?	

ACL2	theorem:
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Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	1:	Plug	DFT	sum	into	IDFT	sum.	3	variables:	p,	q,	and	m
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Step	2:	Merge	exponentials
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Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	2:	Merge	exponentials
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Step	3:	Change	summation	order
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Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	3:	Change	summation	order
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Step	4:	Take	xp out
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Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	4:	Take	xp out
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Step	5:	Take	1/N	in
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Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	5:	Take	1/N	in
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Step	6:	Rewrite	impulse	from	idft of	ones
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where	

𝛿 𝑎 = F1, 𝑎 = 0
0, 𝑎 ≠ 0
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Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	6:	Rewrite	impulse	from	idft of	ones

$𝑥9𝛿[𝑚 − 𝑝]
,(.

9/0

where	

𝛿 𝑎 = F1, 𝑎 = 0
0, 𝑎 ≠ 0

Step	7:	Equate	the	term	to	𝑥&.	This	concludes	the	proof.
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FFT	Implementation	in	ACL2
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• where	𝑊,
& =

	𝑒()*+&/,
• Recursively	calculate	

N/2	point	FFTs	of	even	
and	odd	indices

• Perform	G	+	H*W	over	
each	element
(G	and	H	values	are	used	
twice)



FFT	Implementation	in	ACL2
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Proof	for	FFT	is	DFT
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• Basic	idea	of	FFT:
• Get	rid	of	redundant/repeated	multiplications	
• Remember	intermediate	results

• Different	derivations	for	Decimation-in-time	(DIT)	and	Decimation-in-
frequency	(DIF).	Only	DIT	will	be	discussed	here.
• ACL2	Theorem:



Proof	for	FFT	is	DFT	- Steps

11/10/17 17

DFT	formula:
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Proof	for	FFT	is	DFT	- Steps
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Proof	for	FFT	is	DFT	- Steps
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Proof	for	FFT	is	DFT	- Steps

11/10/17 20

Step	3:	Take	the	constant	exponential	out
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Observation	1:
𝑋" = (𝑁/2	𝑝𝑜𝑖𝑛𝑡	𝐷𝐹𝑇	𝑜𝑓	𝑒𝑣𝑒𝑛𝑠	𝑥) + (𝑒

()*+"
,- ) ∗ (𝑁/2	𝑝𝑜𝑖𝑛𝑡	𝐷𝐹𝑇	𝑜𝑓	𝑜𝑑𝑑𝑠	𝑥)

Observation	2:
N	point	DFT	is	periodic	with	N	(i.e.	Xk =	Xk+N)



Proof	for	FFT	is	DFT	- Steps
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Observation	1:
𝑋" = (𝑁/2	𝑝𝑜𝑖𝑛𝑡	𝐷𝐹𝑇	𝑜𝑓	𝑒𝑣𝑒𝑛𝑠	𝑥) + (𝑒

()*+"
,- ) ∗ (𝑁/2	𝑝𝑜𝑖𝑛𝑡	𝐷𝐹𝑇	𝑜𝑓	𝑜𝑑𝑑𝑠	𝑥)

Observation	2:	N	point	DFT	is	periodic	with	N	(i.e.	Xk =	Xk+N)
=>	1st and	2nd DFTs	give	the	same	result	for	k	and	k+N/2

(e.g.	evendft(x)k	=	evendft(x)k+N/2)
=>	Instead	of	calculating	separately	for	all	k	∈ [0	N-1],

calculate	1st and	2nd DFTs	for	k	∈ [0	N/2-1]	
remember	and	use	those	values	twice	for	k	and	k+N/2

Applying	these	concludes	the	proof.



Future	Work
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Implement	this	FFT	web,
- in	the	DE	system	in	ACL2
- as	a	self-timed,	asynchronous	circuit


