
DFT	and	FFT	implementations	
and	proofs	using	ACL2

Mertcan	Temel

11/10/17



What	is	Fourier	Transform?

• 3	main	types:
• Continuous	Time	Fourier	Transform	(CTFT)

• Input:	Continuous,	Output:	Continuous
• Discrete	Time	Fourier	Transform	(DTFT)

• Input:	Discrete,							Output:	Continuous
• Discrete	Fourier	Transform	(DFT)

• Input:	Discrete,								Output:	Discrete

• Decomposition	of	a	signal	into	the	frequencies	that	make	it	up
• Applications	include:
• Differential/Difference	Eqs,	Filter	Design,	Speech	Recognition,	Fast	Large	
Integer	Multiplication…

• The	one	we	are	interested	in
• Fast	Fourier	Transform	(FFT):	some	efficient	algorithms	to	compute	DFT

11/10/17 1 of	22



What	is	Discrete	Fourier	Transform	(DFT)?

𝑋" = $ 𝑥&𝑒
()*+&"

,-
,(.

&/0

DFT	

𝑥& =
1
𝑁
$ 𝑋"𝑒

)*+&"
,-

,(.

"/0

Inverse	DFT	(IDFT)

x:		input	vector	of	finite	length	N
xm:	mth element	of	x
X:	output	vector	of	the	same	length	N
Xk:	kth element	of	X
j:	square	root	of	-1	

DFT	Implementation:
• Calculate	the	sum	over	m from	0	to	N-1	for	every	k	in	[0	N-1]
• Time	complexity	of	O(N2)

11/10/17 2 of	22



What	is	Fast	Fourier	Transform	(FFT)?
• An	efficient	implementation	of	DFT
• Two	most	commonly	known	ways:
• Decimation-in-time	(DIT)
• Decimation-in-frequency	(DIF)

• Restriction:	vector	length	N	should	be	power	of	2.	If	not,	fill	with	0s.
• A	recursive	algorithm	

11/10/17 3 of	22



What	is	Fast	Fourier	Transform	(FFT)?

11/10/17 4 of	22

N/2
point
DFT
(FFT)

N/2
point
DFT
(FFT)

x0
x2
x4
.
.
.

x1
x3
x5
.
.
.

Evens

Odds

G0

G1

G2

.

.

.

H0

H1

H2

.

.

.

𝑊,
0

𝑊,
.

𝑊,
*

𝑊,
…

𝑊,
,/*

𝑊,
,/*6.

𝑊,
,/*6*

𝑊,
…

X0	 =	G0 +	H0*𝑊,
0

X1 =	G1 +	H1*𝑊,
.

X2 =	…

X…

XN/2
XN/2+1
XN/2+2
X…

• where	𝑊,
& =	𝑒()*+&/,

• Decimation-in-time
• Recursive	definition	with	

base	N=2
• N=2	step	is	also	called	

butterfly	step
• Time	complexity	of	

O(Nlog(N))



Work	Done	in	ACL2

11/10/17 5 of	22

• DFT	Implementation
• Proof	for	(idft (dft x	N)	N)	=	x

• FFT	decimation-in-time	implementation
• Proof	for	(fft x	N)	=	(dft x	N)



DFT	Implementation	in	ACL2

𝑋" = $ 𝑥&𝑒
()*+&"

,-
,(.

&/0

DFT	

𝑥& =
1
𝑁
$ 𝑋"𝑒

)*+&"
,-

,(.

"/0

Inverse	DFT	(IDFT)

11/10/17 6 of	22



Proof	for	IDFT	of	DFT	of	X	is	X

Goal:
Prove	that	inverse	DFT	of	DFT	of	a	vector	gives	the	original	vector.	
i.e.	(idft (dft x))	=	x?	

ACL2	theorem:

11/10/17 7 of	22



Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	1:	Plug	DFT	sum	into	IDFT	sum.	3	variables:	p,	q,	and	m

1
𝑁
$($ 𝑥9𝑒

()*+:9
,-

,(.

9/0

)𝑒
)*+&:

,-
,(.

:/0

Step	2:	Merge	exponentials

1
𝑁
$ $ 𝑥9𝑒

()*+:96)*+&:
,-

,(.

9/0

,(.

:/0

11/10/17 8 of	22



Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	2:	Merge	exponentials

1
𝑁
$ $ 𝑥9𝑒

()*+:96)*+&:
,-

,(.

𝒑/0

,(.

𝒒/0

Step	3:	Change	summation	order

1
𝑁
$ $ 𝑥9𝑒

)*+:(&(9)
,-

,(.

𝒒/0

,(.

𝒑/0

11/10/17 9 of	22



Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	3:	Change	summation	order

1
𝑁
$ $ 𝑥9𝑒

)*+:(&(9)
,-

,(.

:/0

,(.

9/0

Step	4:	Take	xp out

1
𝑁
$ 𝑥9 $ 𝑒

)*+:(&(9)
,-

,(.

:/0

,(.

9/0

11/10/17 10 of	22



Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	4:	Take	xp out

1
𝑁
$ 𝑥9 $ 𝑒

)*+:(&(9)
,-

,(.

:/0

,(.

9/0

Step	5:	Take	1/N	in

$𝑥9(
1
𝑁
$ 1 ∗ 𝑒

)*+: &(9
,- )

,(.

:/0

,(.

9/0

11/10/17 11



Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	5:	Take	1/N	in

$𝑥9(
1
𝑁
$ 1 ∗ 𝑒

)*+: &(9
,- )

,(.

:/0

,(.

9/0

Step	6:	Rewrite	impulse	from	idft of	ones

$𝑥9𝛿[𝑚 − 𝑝]
,(.

9/0

where	

𝛿 𝑎 = F1, 𝑎 = 0
0, 𝑎 ≠ 0

11/10/17 12



Proof	for	IDFT	of	DFT	of	X	is	X	- Steps

Step	6:	Rewrite	impulse	from	idft of	ones

$𝑥9𝛿[𝑚 − 𝑝]
,(.

9/0

where	

𝛿 𝑎 = F1, 𝑎 = 0
0, 𝑎 ≠ 0

Step	7:	Equate	the	term	to	𝑥&.	This	concludes	the	proof.

11/10/17 13



FFT	Implementation	in	ACL2

11/10/17 14

N/2
point
DFT
(FFT)

N/2
point
DFT
(FFT)

x0
x2
x4
.
.
.

x1
x3
x5
.
.
.

Evens

Odds

G0

G1

G2

.

.

.

H0

H1

H2

.

.

.

𝑊,
0

𝑊,
.

𝑊,
*

𝑊,
…

𝑊,
,/*

𝑊,
,/*6.

𝑊,
,/*6*

𝑊,
…

X0	 =	G0 +	H0*𝑊,
0

X1 =	G1 +	H1*𝑊,
.

X2 =	…

X…

XN/2
XN/2+1
XN/2+2
X…

• where	𝑊,
& =

	𝑒()*+&/,
• Recursively	calculate	

N/2	point	FFTs	of	even	
and	odd	indices

• Perform	G	+	H*W	over	
each	element
(G	and	H	values	are	used	
twice)



FFT	Implementation	in	ACL2

11/10/17 15



Proof	for	FFT	is	DFT

11/10/17 16

• Basic	idea	of	FFT:
• Get	rid	of	redundant/repeated	multiplications	
• Remember	intermediate	results

• Different	derivations	for	Decimation-in-time	(DIT)	and	Decimation-in-
frequency	(DIF).	Only	DIT	will	be	discussed	here.
• ACL2	Theorem:



Proof	for	FFT	is	DFT	- Steps

11/10/17 17

DFT	formula:

𝑋" = $ 𝑥J𝑒
()*+J"

,-
,(.

J/0

Step	1:	Divide	into	two	summations

𝑋" = $ 𝑥*J𝑒
()*+(*J)"

,-
,/*(.

J/0

+ $ 𝑥*J6.𝑒
()*+(*J6.)"

,-
,/*(.

J/0



Proof	for	FFT	is	DFT	- Steps

11/10/17 18

Step	1:	Divide	into	two	summations

𝑋" = $ 𝑥*J𝑒
()*+(*J)"

,-
,/*(.

J/0

+ $ 𝑥*J6.𝑒
()*+(*J6.)"

,-
,/*(.

J/0

Step	2:	Distribute	and	commute	constants

𝑋" = $ 𝑥*J𝑒
()*+"

(,/*)-
,/*(.

J/0

+ $ 𝑥*J6.𝑒
()*+"J

(,/*)- 𝑒
()*+"

,-
,/*(.

J/0



Proof	for	FFT	is	DFT	- Steps

11/10/17 19

Step	2:	Distribute	and	commute	constants

𝑋" = $ 𝑥*J𝑒
()*+"

(,/*)-
,/*(.

J/0

+ $ 𝑥*J6.𝑒
()*+"J

(,/*)- 𝑒
()*+"

,-
,/*(.

J/0

Step	3:	Take	the	constant	exponential	out

𝑋" = $ 𝑥*J𝑒
()*+"

(,/*)-
,/*(.

J/0

+ (𝑒
()*+"

,- ) $ 𝑥*J6.𝑒
()*+"J

(,/*)-
,/*(.

J/0



Proof	for	FFT	is	DFT	- Steps

11/10/17 20

Step	3:	Take	the	constant	exponential	out

𝑋" = $ 𝑥*J𝑒
()*+"

(,/*)-
,/*(.

J/0

+ (𝑒
()*+"

,- ) $ 𝑥*J6.𝑒
()*+"J

(,/*)-
,/*(.

J/0

Observation	1:
𝑋" = (𝑁/2	𝑝𝑜𝑖𝑛𝑡	𝐷𝐹𝑇	𝑜𝑓	𝑒𝑣𝑒𝑛𝑠	𝑥) + (𝑒

()*+"
,- ) ∗ (𝑁/2	𝑝𝑜𝑖𝑛𝑡	𝐷𝐹𝑇	𝑜𝑓	𝑜𝑑𝑑𝑠	𝑥)

Observation	2:
N	point	DFT	is	periodic	with	N	(i.e.	Xk =	Xk+N)



Proof	for	FFT	is	DFT	- Steps

11/10/17 21

Observation	1:
𝑋" = (𝑁/2	𝑝𝑜𝑖𝑛𝑡	𝐷𝐹𝑇	𝑜𝑓	𝑒𝑣𝑒𝑛𝑠	𝑥) + (𝑒

()*+"
,- ) ∗ (𝑁/2	𝑝𝑜𝑖𝑛𝑡	𝐷𝐹𝑇	𝑜𝑓	𝑜𝑑𝑑𝑠	𝑥)

Observation	2:	N	point	DFT	is	periodic	with	N	(i.e.	Xk =	Xk+N)
=>	1st and	2nd DFTs	give	the	same	result	for	k	and	k+N/2

(e.g.	evendft(x)k	=	evendft(x)k+N/2)
=>	Instead	of	calculating	separately	for	all	k	∈ [0	N-1],

calculate	1st and	2nd DFTs	for	k	∈ [0	N/2-1]	
remember	and	use	those	values	twice	for	k	and	k+N/2

Applying	these	concludes	the	proof.



Future	Work

11/10/17 22

Implement	this	FFT	web,
- in	the	DE	system	in	ACL2
- as	a	self-timed,	asynchronous	circuit


