DFT and FFT implementations
and proofs using ACL2

Mertcan Temel



What is Fourier Transform?

* Decomposition of a signal into the frequencies that make it up

e Applications include:

* Differential/Difference Eqs, Filter Design, Speech Recognition, Fast Large
Integer Multiplication...

* 3 main types:
e Continuous Time Fourier Transform (CTFT)
* |nput: Continuous, Output: Continuous
e Discrete Time Fourier Transform (DTFT)
* |nput: Discrete, Output: Continuous

* Discrete Fourier Transform (DFT)
* |Input: Discrete, Output: Discrete
* The one we are interested in
* Fast Fourier Transform (FFT): some efficient algorithms to compute DFT



What is Discrete Fourier Transform (DFT)?

N-1 N-1
-jzmmk 1 j2mmk
Xy = Xm € N Xy = N Xje N
m=0 k=0
DFT Inverse DFT (IDFT)

X: input vector of finite length N

X.: mth element of x

X: output vector of the same length N
X, : kth element of X

j: square root of -1

DFT Implementation:

e Calculate the sum over m from 0 to N-1 for every k in [0 N-1]
* Time complexity of O(N?)



What is Fast Fourier Transform (FFT)?

* An efficient implementation of DFT

* Two most commonly known ways:
e Decimation-in-time (DIT)
e Decimation-in-frequency (DIF)

* Restriction: vector length N should be power of 2. If not, fill with Os.

* A recursive algorithm



Evens -

Odds -

What is Fast Fourier Transform (FFT)?

11/10/17

; A

6, S

e

Xo
X, N/2
' point
fa_ DFT
: (FFT)

X1
X3 N/2
point

X5
= DFT
- (FFT)

W..

N/2

N/2+1
H, %\?

/242
H, %\‘

— X

X _G +H*WN
X, =G, + H *Wy
X =

X...

N/2

N/2+1

ﬁb%i; N/2+2
> X

where Wit = ¢=J2mm/N

Decimation-in-time
Recursive definition with
base N=2

N=2 step is also called
butterfly step

Time complexity of
O(Nlog(N))

4 of 22



Work Done in ACL2

* DFT Implementation
* Proof for (idft (dft x N) N) = x

* FFT decimation-in-time implementation
* Proof for (fft x N) = (dft x N)



DFT Implementation in ACL2

N—-1

—j27'cmk/
X = Xm€ N

m=0

DFT

(defun dft_sum (x N k m)
(declare (xargs :measure (nfix (= N m))))
(if (zp (- N m))
(]
(+ (% (number-fix (nth m x))
(exp— (x #c(0 1)

(dft_sum x N

11/10/17

(defun dft_eachk (x N k)
(declare (xargs :measure (nfix (- n k))))
(if (zp (= N k))
nil
(cons (dft_sum x N k @)
(dft_eachk x N (1+ k)))))

(defun dft (x N)
(dft_eachk x N 0))

6 of 22



Proof for IDFT of DFT of X is X

Goal:

Prove that inverse DFT of DFT of a vector gives the original vector.
i.e. (idft (dft x)) = x?

ACL2 theorem:

(DEFTHM IDFT-OF-DFT-0F-X-IS-X
(IMPLIES (AND (ACL2-NUMBER-LISTP X)
(EQUAL N (LEN X)))
(EQUAL (IDFT (DFT X N) N) X))



Proof for IDFT of DFT of X is X - Steps

Step 1: Plug DFT sum into IDFT sum. 3 variables: p, g, and m
N-1 N-1
! —j2nqp j2nmgq
() xpe /NYe /N

—j2nqp+j2an/N



Proof for IDFT of DFT of X is X - Steps

Step 2: Merge exponentials

1 —j27rqp+j27rmq/N




Proof for IDFT of DFT of X is X - Steps

Step 3: Change summation order
N-1N-1

1 O O j2mq(m-p),
NZ Z *p€ !
p=0 q=0

Step 4: Take x, out

N-—1 N-—1
1 j2rq(m=p),
DI DI
p=0 q=0



Proof for IDFT of DFT of X is X - Steps

Step 4: Take x, out

N-
1 z z j2mq(m-p)/
— N
N — —

Step 5: Take 1/N in

jmam=p)y,



Proof for IDFT of DFT of X is X - Steps

Step 5: Take 1/N in
N-1 N—
Z 1 Z JZﬂQ(m—p)/N)
N
p:O :

Step 6: Rewrite impulse from idft of ones
N-1

> x,80m —p]

p=0
where
1, a=20

olal :{o, a#0



Proof for IDFT of DFT of X is X - Steps

Step 6: Rewrite impulse from idft of ones

N—1
z xp0|lm — p]
p=0

where

1, a=~0
olal = {0, a+#0

Step 7: Equate the term to x,,,. This concludes the proof.



FFT Implementation in ACL2

, W X, = Gp + Ho*Wy
x N2 &1 v X, =G, +H*W
point 1 =9 1 WN
Evens - Xy DET G, /VI//,”‘ X
4 2 =
: (FFT) : /W/
RN X
N/2
Xy H
' i N/2+1 X2
X; N/2 H, %_. X
point %\:%2 N/2+1
Odds 1 X DET H, X,y
SN2 Wi,

11/10/17

where Wy =
e—jan/N

Recursively calculate
N/2 point FFTs of even
and odd indices
Perform G + H*W over

each element
(G and H values are used
twice)

14



FFT Implementation in ACL2

(defun fft2-dit-multi (G H i N)

(declare (xargs :measure (nfix (- N 1))))
(if (zp (- N 1i))

nil

(let ((j (if (>=1 (/ N2)) (-1 (/ N2)) 1i)))
(cons (+ (number-fix (nth j G))
(* (number-fix (nth j H))
(WNk i N)))
(fft2-dit-multi G H (1+ i) N)))))

(defun fft2-dit (x N)
(declare (xargs :measure (if (> N 1) (floor N 1/2) 0)))
(if (or (not (integerp N)) (<= N 1))
(list (number-fix (car x)))
(let ((evenfft (fft2-dit (getevens x) (/ N 2)))
(oddfft (fft2-dit (getodds x) (/ N 2))))
(fft2-dit-multi evenfft oddfft @ N))))

11/10/17

15



Proof for FFT is DFT

e Basic idea of FFT:

e Get rid of redundant/repeated multiplications
* Remember intermediate results

e Different derivations for Decimation-in-time (DIT) and Decimation-in-
frequency (DIF). Only DIT will be discussed here.

e ACL2 Theorem:

(DEFTHM DFT-IS-FFT-DIT
(IMPLIES (POWER-OF-2 N)
(EQUAL (DFT X N) (FFT2-DIT X N)))



Proof for FFT is DFT - Steps

DFT formula:

N-1
—j2nnk
X = ane /n
n=0

Step 1: Divide into two summations
N/2-1 N/2-1

—j2n(2n)k —j2mt(2n+1)k
Xk = Z X2n€ /N + z Xon+1€ /N

n=0 n=0



Proof for FFT is DFT - Steps

Step 1: Divide into two summations

N/2-1 N/2-1
—j2n(2n)k/ —j2n(2n+1)k/
X = Xon€ N+ 2 Xon+1€ N
n=0 n=0

Step 2: Distribute and commute constants
N/2-1 N/2-1

—Jj21k —Jj21Tkn i
Xk = Z Xon€ /(N/2)+ z Xon+1€ /(N/Z)e T2y

n=0 n=0



Proof for FFT is DFT - Steps

Step 2: Distribute and commute constants
N/2-1 N/2-1

—j21k —j21Tkn i
Xk — 2 Xon€ /(N/2)+ 2 Xon+1€ /(N/Z)e ]an/N

n=0 n=0

Step 3: Take the constant exponential out
N/2-1 N/2-1

—Jj2mk — 21k —j2mkn
Xk = z Xon€ [v/2) + (e . /N) z Xon+1€ [t /2)
n=0

n=0



Proof for FFT is DFT - Steps

Step 3: Take the constant exponential out
N/2-1 N/2-1

Xk _ 2 xZne_]znk/(N/Z) N (e—]zyrk/N) z x2n+1e—]2nkn/(N/2)
n=0 n=0

Observation 1.:

X, = (N/2 point DFT of evens x) + (e_jznk/N) * (N/2 point DFT of odds x)

Observation 2:

N point DFT is periodic with N (i.e. X, = X,



Proof for FFT is DFT - Steps

Observation 1:
—j2mk
X, = (N/2 point DFT of evens x) + (e o /N) * (N/2 point DFT of odds x)

Observation 2: N point DFT is periodic with N (i.e. X, = X,n)
=> 15t and 2"9 DFTs give the same result for k and k+N/2
(e.g. evendft(x), = evendft(x),,n/»)
=> |nstead of calculating separately for all k € [0 N-1],
calculate 15t and 2" DFTs for k € [0 N/2-1]
remember and use those values twice for k and k+N/2

Applying these concludes the proof.



Future Work

Implement this FFT web,
- in the DE system in ACL2
- as a self-timed, asynchronous circuit



