CLASS DIAGRAM EQUIVALENCE

Judy Altoyan
Don Batory

Background Student
- A class diagram (CD) is a 53:?:;
standard graphical notation to

depict object oriented designs
in terms of classes and their
relationships

cone
of
instances

- A class defines a “type” which
has instances

Background

- An object oriented design usually has many classes

- Classes has relationships called associations that have
role names and cardinalities

Student w Course Instructor

-hasStudents -enrolledin -teaches -taughtBy
-name -name -name

-gender -syllabus -rank
-address 10..* / 1.5 -courselD 1.2 1 -UTEID

‘<
Background

- A class diagram has instances — here is one of a colossal number of instances

,/%/7)
Course 81 C2

-hasStudents -enrolledin “hame

-name -uniqueNumber S2 C3

-gender -building
-address 10..* 1.6 -room

-time 83

Student

S4

1..2 -teaches

1 -taughtBy

i1 12

Instructor

-name
-rank
-serial#

Basic Question: Equivalence

- Do two class diagrams encode the same information?
- If so, we say they refactorings of each other — show by applying a series of

scholar equality rewrites
Course
Student “hame
-hasStudents -enrolledin name -gender

-name -uniqgueNumber -address
-gender -building
-address 10..* 1.6 [|room Course

-time 1 “ame

-enrolledin Enroll 10..* 1 .
uniqueNumber
? -building
1..6 -hasStudents -room
1..2 -teaches -time
|
1 -taughtBy
[e | 1 _taughtBy 1.2 -teaches
Instructor

-name Professor

-rank -name

-serial# -rank

-serial#

Foundation for Proving Equivalence uses

CD Transformations / Rewrites

- A class diagram 4!/1 is a mapping or embedding into another class diagram
adl2 , T (dll)=dl2 such that:

ViEL(dI1)=T (di1)eL(dI2)

al)

Ll S i ez L(di2)

To Prove a CD Refactoring

Of a class diagram 4!/1 to class diagram 4/2 requires transformation 7 to be
invertible:

TT-1-T(x)=xand T-TT-1 (y)=y

41 T (di1)=di2

ViEL (A)=T (DEL(dI2) @iz

S(di2)=dl1
YIEL(dI2)=S (DEL(dI1

Where S=T7-1 1)az

In General the Information in a Class Diagram is

- Classes — with their scalar-valued fields, domains of objects
- Associations among pairs of classes + role names (turn in to set-valued fields)
- Cardinalities — how many objects of class T are connect to objects of class R

- Can be additional constraints

all courses have unique course numbers
no two students have the same name and postal address

Our Immediate Goal

- Given two class diagrams (CDs), how do we prove they are equivalent?

- This much we know & need:

1. We need a formal representation of a CD

2. And a mapping/correspondence between CDs must be defined

- Should be able to prove disprove equivalence

- Mechanize what we are doing by hand now...

. R
So What? (Always a Good Question To Ask)

- Not possible to verify refactorings in commercial languages — Java
- no formal model of Java exists, only tiny versions (Featherweight Java)

- Class diagrams are as close as likely anyone can get now
- is still a fundamental open problem in MDE ~15+ years old, UML > 20 years

- Fundamental problem:
- CD transformations (that’'s what MDE is all about)
- database to database transformations (that's what database migration is all about)

- It is high time to make progress

Formal Notations That Have Been Used

- First-order-logic: predicate logic with quantifiers over variables.

- Description logic (DL): decidable fragments of first-order logic
- define sets, subset relationships, cross-products, cardinality constraints

- Relational Algebra: includes projection, join, etc. on database tables
- CDs represent database schemas
- Mappings represent database translations

- Formal specification languages: Alloy, Z notation, Object-Z, Cog

Example in FOL notation

- Classes are unary predicates: Course
Course(x) name

-uniqueNumber
/”Strucz'ar(ﬂf) :l::(l)lr:mg
-time

- Associations are binary predicates:
Vxy.teaches(x,y)-Instructor(x)\Course(y)

1..2 -teaches

1 -taughtBy

- Attributes are binary predicates: Instructor
Vxy.rank(xy)-Instructor(x)\String(y) rank
need set serial#
cardinality
- Cardinalities are constraints: primitives

(Vx.Course(x)->3Ay.taughtBy(x,y))N\
(Vayyl taughtBy(xy)NtaughtBy(xyT)->y=yT)

Proof Tools

Problem: maturity and dependability of tools. Most student-produced tools
aren’t very good.

- DL reasoners: different reasoner for each DL notation. Seem flakey....
- E.g. FaCT++, Pellet, Racer, etc.

- Proof assistants: require user interaction.
- E.g. PVS, Isabell, Coq, etc.

- Theorem provers: fully automated.
- E.g. ACL2, Prover9, Vampire, SPASS, etc.

- SAT solvers
- E.g. Alloy

Prior Work

Most work on class diagram analysis is to prove that it is satisfiable — it has at
least one instance

Description logic reasoners were used to detect unsatisfiable concepts
(i.e. classes that cannot be instantiated).

Alloy was used to formally represent CDs and analyze them for
Inconsistences. However, since Alloy only permits bounded analysis scope,
It cannot be used as a theorem prover.

One work on Alloy Model equivalence used PVS where an equivalence notion
was defined. CD equivalence can then be derived by translating to
corresponding Alloy models.

.
\We Need Advice...

- What tool is most suited for proving CD equivalence?
- ideally it directly supports the concepts that we need to express class diagrams

- What is the ramp time to learn a tool?

- Anyone here (or that you know of) have interest in this problem?

Thank Ewe!l = u»;

