
CLASS DIAGRAM EQUIVALENCE
Judy Altoyan
Don Batory

1

Background
• A class diagram (CD) is a
standard graphical notation to
depict object oriented designs
in terms of classes and their
relationships

• A class defines a “type” which
has instances

2

S1
S2

S3
S4

cone
of

instances

Background
• An object oriented design usually has many classes
• Classes has relationships called associations that have

role names and cardinalities

3

-name
-gender
-address

Student

-name
-gender
-address

Student

-name
-syllabus
-courseID

Course

-name
-gender
-address

Student

-name
-syllabus
-courseID

Course

-name
-rank
-UTEID

Instructor

-name
-gender
-address

Student

-name
-syllabus
-courseID

Course
-hasStudents

10..*

-enrolledIn

1..5

-name
-gender
-address

Student

-name
-syllabus
-courseID

Course
-hasStudents

10..*

-enrolledIn

1..5

-name
-gender
-address

Student

-name
-syllabus
-courseID

Course

-name
-rank
-UTEID

Instructor
-hasStudents

10..*

-enrolledIn

1..5

-teaches

1..2

-taughtBy

1

Background
• A class diagram has instances – here is one of a colossal number of instances

4

S1

S2

S3

S4

C1

C2

C3

i1 i2

-name
-gender
-address

Student -name
-uniqueNumber
-building
-room
-time

Course

-hasStudents

10..*

-enrolledIn

1..6

-name
-rank
-serial#

Instructor

-teaches1..2

-taughtBy1

Basic Question: Equivalence
• Do two class diagrams encode the same information?
•  If so, we say they refactorings of each other – show by applying a series of

 equality rewrites

5

?
-name
-gender
-address

Student -name
-uniqueNumber
-building
-room
-time

Course

-hasStudents

10..*

-enrolledIn

1..6

-name
-rank
-serial#

Instructor

-teaches1..2

-taughtBy1

- name
- gender
- address

Scholar

- name
- uniqueNumber
- building
- room
- time

Course

- name
- rank
- serial #

Professor

- teaches 1 .. 2 - taughtBy 1

Enroll 1
- enrolledIn

1 .. 6

1

- hasStudents

10 ..*

Foundation for Proving Equivalence uses
CD Transformations / Rewrites

• A class diagram ​𝑑↓1  is a mapping or embedding into another class diagram ​
𝑑↓2 , 𝒯(​𝑑↓1 )= ​𝑑↓2  such that:

∀𝑖∈ℒ(​𝑑↓1 )⟹𝒯(​𝑑↓1 )∈ℒ(​𝑑↓2 )

6

​𝑑↓1 

​𝑖↓1 

​𝑑↓2 

​𝑖↓2  ℒ(​𝑑↓1 ) ℒ(​𝑑↓2 )

To Prove a CD Refactoring
Of a class diagram ​𝑑↓1  to class diagram ​𝑑↓2  requires transformation 𝒯 to be
invertible:

​𝒯↑−1 ⋅𝒯(𝑥)=𝑥 and 𝒯⋅ ​𝒯↑−1 (𝑦)=𝑦

Where 𝒮= ​𝒯↑−1 

7

​𝑑↓1 

​𝑖↓1 

​𝑑↓2 

​𝑖↓2 

𝒯(​𝑑↓1 )= ​𝑑↓2 
∀𝑖∈ℒ(​𝑑↓1 )⟹𝒯(𝑖)∈ℒ(​𝑑↓2 )

𝒮(​𝑑↓2 )= ​𝑑↓1 
∀𝑖∈ℒ(​𝑑↓2 )⟹𝒮(𝑖)∈ℒ(​𝑑↓1 )

In General the Information in a Class Diagram is
• Classes – with their scalar-valued fields, domains of objects

• Associations among pairs of classes + role names (turn in to set-valued fields)

• Cardinalities – how many objects of class T are connect to objects of class R

• Can be additional constraints

 all courses have unique course numbers
 no two students have the same name and postal address
 …

8

Our Immediate Goal
• Given two class diagrams (CDs), how do we prove they are equivalent?

•  This much we know & need:

1.  We need a formal representation of a CD

2.  And a mapping/correspondence between CDs must be defined

• Should be able to prove disprove equivalence

• Mechanize what we are doing by hand now…

9

So What? (Always a Good Question To Ask)
• Not possible to verify refactorings in commercial languages – Java

• no formal model of Java exists, only tiny versions (Featherweight Java)

• Class diagrams are as close as likely anyone can get now
•  is still a fundamental open problem in MDE ~15+ years old, UML > 20 years

•  Fundamental problem:
• CD transformations (that’s what MDE is all about)
• database to database transformations (that’s what database migration is all about)

•  It is high time to make progress

10

Formal Notations That Have Been Used
•  First-order-logic: predicate logic with quantifiers over variables.

• Description logic (DL): decidable fragments of first-order logic
•  define sets, subset relationships, cross-products, cardinality constraints

• Relational Algebra: includes projection, join, etc. on database tables
•  CDs represent database schemas
•  Mappings represent database translations

•  Formal specification languages: Alloy, Z notation, Object-Z, Coq

11

Example in FOL notation
•  Classes are unary predicates:

 𝐶𝑜𝑢𝑟𝑠𝑒(𝑥)
 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟(𝑥)

•  Associations are binary predicates:
 ∀𝑥,𝑦.𝑡𝑒𝑎𝑐ℎ𝑒𝑠(𝑥,𝑦)→𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟(𝑥)∧𝐶𝑜𝑢𝑟𝑠𝑒(𝑦)

•  Attributes are binary predicates:
 ∀𝑥,𝑦.𝑟𝑎𝑛𝑘(𝑥,𝑦)→𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟(𝑥)∧𝑆𝑡𝑟𝑖𝑛𝑔(𝑦)

•  Cardinalities are constraints:
 (∀𝑥.𝐶𝑜𝑢𝑟𝑠𝑒(𝑥)→∃𝑦.𝑡𝑎𝑢𝑔ℎ𝑡𝐵𝑦(𝑥,𝑦))∧

 (∀𝑥,𝑦, ​𝑦↑′ .𝑡𝑎𝑢𝑔ℎ𝑡𝐵𝑦(𝑥,𝑦)∧𝑡𝑎𝑢𝑔ℎ𝑡𝐵𝑦(𝑥, ​𝑦↑′ )→𝑦= ​𝑦↑′ )

12

-name
-gender
-address

Student -name
-uniqueNumber
-building
-room
-time

Course

-hasStudents

10..*

-enrolledIn

1..6

-name
-rank
-serial#

Instructor

-teaches1..2

-taughtBy1

need set
cardinality
primitives

Proof Tools
Problem: maturity and dependability of tools. Most student-produced tools
aren’t very good.
• DL reasoners: different reasoner for each DL notation. Seem flakey….

•  E.g. FaCT++, Pellet, Racer, etc.

• Proof assistants: require user interaction.
•  E.g. PVS, Isabell, Coq, etc.

•  Theorem provers: fully automated.
•  E.g. ACL2, Prover9, Vampire, SPASS, etc.

• SAT solvers
•  E.g. Alloy

13

Prior Work
• Most work on class diagram analysis is to prove that it is satisfiable – it has at

least one instance
•  Description logic reasoners were used to detect unsatisfiable concepts

(i.e. classes that cannot be instantiated).

• Alloy was used to formally represent CDs and analyze them for
inconsistences. However, since Alloy only permits bounded analysis scope,
it cannot be used as a theorem prover.

• One work on Alloy Model equivalence used PVS where an equivalence notion
was defined. CD equivalence can then be derived by translating to
corresponding Alloy models.

14

We Need Advice…

• What tool is most suited for proving CD equivalence?
•  ideally it directly supports the concepts that we need to express class diagrams

• What is the ramp time to learn a tool?

• Anyone here (or that you know of) have interest in this problem?

15

شكر
 ا

Thank Ewe!

