
An Introduction to Agda

Curtis Dunham
February 1, 2019

Agenda

• History
• Agda

– What it is
– Why it’s interesting
– Some basic definitions and proofs

• Demo
– Emacs interaction
– Typed holes
– Short proofs

2

Intuitionistic Type Theory:
The Forefathers

3

Intuitionism Types

Brouwer Russell

Intuitionism

• Briefly: mathematics without
The Law of the Excluded Middle (LEM)

• LEM: All propositions are either true or false;
∀ P, P ∨ ¬P.

• Demands construction of witnesses:
∃x : P(x) can only be proven by constructing an
object x such that P(x).

4

Russell’s Types

• Russell’s Paradox:
“the set of all sets that do not contain themselves”

• Self-reference is problematic

• Types enforce a hierarchy in which self-reference is
impossible

5

BHK Interpretation1

• The Brouwer-Heyting-Kolmogorov Interpretation:
interpretation of the logical operators in
intuitionistic logic

• A ∧ B requires a proof of A and a proof of B
• A ∨ B requires a proof of A or a proof of B
…

6

BHK Interpretation2

• A → B requires a construction that transforms any
proof of A into a proof of B
– i.e. evidence a : A transformed by function f

such that f(a) : B

• ⊥ (absurdity) has no proof
• ¬A means A → ⊥

7

Curry-Howard Correspondence

• and ⟺ pairing
• or ⟺ tagged union
• implication⟺ function application
• false/absurdity ⟺ type with no members

8

Intuitionistic Type Theory

• Per Martin-Löf:
Martin-Löf Type Theory (MLTT) (1972)

Some key contributions towards Agda:
• Calculus of Constructions, Coquand
• Calculus of Inductive Constructions, Paulin-Mohring
• UTT, Luo
• Agda 2, Ulf Norell

 9

What is Agda?

From the website [1] :
• A dependently-typed functional programming language
• A proof assistant

A product of Sweden – Chalmers, Gothenburg University

[1] http://wiki.portal.chalmers.se/agda/

10

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

Similar Systems

• Coq (CIC), Ocaml
• Matita (CIC), Ocaml
• Lean (CIC), C++
• Idris, Haskell

11

Agda and Haskell

Agda is…
• Written in Haskell
• Compiles to Haskell
• Liberally borrows Haskell syntax

Haskell influence brings:
• Fancy lambda calculus with pattern matching
• Significant indentation

12

Normal dependently typed features

• Types and terms share hierarchy of universes
– Terms in types, types in terms – “full lambda cube”
– Type functions

• “Propositions as Types”, “Proofs are Programs”
• A theorem is the type of its proofs
• A proof “proves” the theorem by inhabiting/having the type

• Dependent product (Π), dependent sum (Σ)
– Constructive “for all” and “there exists” quantifiers

• Type inference: arguments can often be inferred

13

Programming Language or Prover?

Recall: Agda is both
• A dependently-typed functional programming language
• A proof assistant

In this logical system, type checking = proof checking

When using Agda as a prover, programs are not “compiled”;
type checking is sufficient.

14

How?

Distinct features

• Interactive editing of typed holes in Emacs
• Unicode

• Proof terms – deBruijn criterion ✓

– Unlike tactic-oriented provers (e.g. Coq, HOL),
in Agda the proof terms are written directly

– A brief aside for the next few slides:
This attribute receives undeserved negative prejudice

15

Proof Terms

• Back in 2010, Ben Delaware gave a Coq introduction
to this audience

• He suggested that writing proof terms (as in Agda)
is unpleasant

e.g. proof of associativity of list append:

16

Definition app_assoc :=
list_ind
 (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c)
 (fun b c : list A => refl_equal (b ++ c))
 (fun (a0 : A) (a1 : list A)
 (IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c)
 (b c : list A) =>
 let H :=
 eq_ind_r (fun l : list A => a0 :: (a1 ++ b) ++ c = a0 :: l)
 (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) in
 eq_ind_r (fun l : list A => a0 :: a1 ++ b ++ c = l)
 (eq_ind_r (fun l : list A => a0 :: l = a0 :: l)
 (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) a

Proof Tactics

• But that proofs by tactics was more pleasant
e.g. proof script for associativity of list append:

17

Lemma app_assoc : forall A (a b c : list A), a ++ (b ++ c) = (a ++ b) ++ c.
 induction a; simpl; intros.
 reflexivity.
 cut (a :: (a0 ++ b) ++ c = a :: (a0 ++ b ++ c)).
 intros; rewrite H; rewrite IHa; reflexivity.
 rewrite IHa; reflexivity.
Qed.

Counterpoint

• This distinction is true of Coq
– Avoid writing Gallina proof terms directly
– Ltac (tactic language) is dirty, but expedient

• But in Agda …
– Writing proofs as Agda functions isn’t so bad…
– Typed holes provide equivalent interactivity!

18

Why?

Associativity of append in Agda

From the Agda standard library (agda-stdlib):

module _ {a} {A : Set a} where

 ++-assoc : Associative {A = List A} _≡_ _++_
 ++-assoc [] ys zs = refl
 ++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs)

19

Some Definitional Backchaining…

-- Algebra/FunctionProperties.agda
module Algebra.FunctionProperties
 {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where
Associative : Op₂ A → Set _
Associative _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z))

-- Algebra/FunctionProperties/Core.agda
Op₂ : ∀ {ℓ} → Set ℓ → Set ℓ
Op₂ A = A → A → A

20

Definition of ++ (list concatenation)

-- Data/List/Base.agda
infixr 5 _++_

++ : ∀ {a} {A : Set a} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)

21

Definition of ≡ (equality)

-- Agda/Builtin/Equality.agda
infix 4 _≡_
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
 instance refl : x ≡ x

22

Associativity of append, again1

++-assoc : Associative {A = List A} _≡_ _++_
++-assoc [] ys zs = refl
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs)

After applying Associative, the type signature is roughly
λ (x y z : List _) → (x ++ y) ++ z ≡ x ++ (y ++ z)

23

Associativity of append, again2

++-assoc : Associative {A = List A} _≡_ _++_
++-assoc [] ys zs = refl
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs)

Proof proceeds by case analysis on the first argument.

24

Associativity of append, again3

++-assoc : Associative {A = List A} _≡_ _++_
++-assoc [] ys zs = refl
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs)

Base case is trivial (‘refl’ means proof by reflexivity):
Recall that (by definition of ++), [] ++ ys ≡ ys. So
([] ++ y) ++ z ≡ [] ++ (y ++ z)
y ++ z ≡ y ++ z
refl (y ++ z)
 25

Associativity of append, again4

++-assoc : Associative {A = List A} _≡_ _++_
++-assoc [] ys zs = refl
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs)

When using proof by induction, the proof is recursive!
(xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)
x ∷ ((xs ++ ys) ++ zs) ≡ x ∷ (xs ++ (ys ++ zs))
∎

26

Agenda

• Agda
– What it is
– Why it’s interesting
– Some basic definitions and proofs

• Demo
– Emacs interaction
– Typed holes
– Short proofs

27

Agda Strengths

• Interactivity

• Brevity: Unicode, mixfix

• Proof terms
– Powerful formalism, direct Curry-Howard

• Active community and developers

28

Agda Weaknesses

• Large body of background knowledge
• Poor error messages
• Proof automation functionality is minimal

– Counterpoint: mature Reflection API allows self service

• Incomplete documentation
• Slow

29

“Agda-Curious”?

• Programming Language Foundations in Agda
– https://plfa.github.io/
– Port of Software Foundations (Coq) by Pierce, et al.

30

https://plfa.github.io/
https://plfa.github.io/
https://plfa.github.io/

An Introduction to Agda

Curtis Dunham

University of Texas at Austin
and

Arm Research

Thank you!

What questions
do you have?

Backup / Slide Graveyard

32

