A Brief Introduction to Smtlink

Carl Kwan

The University of Texas at Austin

2020 November 09
Outline

- SMT solvers and Z3
- Smtlink
- Basics & Counterexamples (polynomials)
- Uninterpreted functions (expt)
- Uninterpreted types (Cauchy-Schwarz)

ACL2

- induction/recursion
- data structures
- proof management

Z3

- symbolic simulation
- constraint satisfaction
- search

QED or counter example

tedious stuff
SMT Solvers

SMT solvers: solves decision problems for logical formulas with respect to theories expressible in first-order logic

E.g., Are there integers $a, b \geq 0$ satisfying

\[
(b \geq 2) \\
\land (-a + b \leq 1) \\
\land (3a + 2b \leq 12) \\
\land (2a + 3b \leq 12) \ ?
\]

(decision integer program)
Z3 supports:

<table>
<thead>
<tr>
<th>Theory</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>mixed integer linear programming</td>
<td>$a + b \leq x + 1$</td>
</tr>
<tr>
<td>non-linear arithmetic</td>
<td>$x^2 \leq 2$</td>
</tr>
<tr>
<td>bitvectors</td>
<td>$1001 \oplus x = 0110$</td>
</tr>
<tr>
<td>arrays</td>
<td>$a[0] = 10$</td>
</tr>
<tr>
<td>datatypes, quantifiers, and more . . .</td>
<td></td>
</tr>
</tbody>
</table>

ACL2 can already do all this . . .
What about the non-experts? What about new, ad-hoc, or abstract data structures?

Example that’s hard in ACL2, even with arithmetic or non-linear-arithmetic:

$$x, y \in \mathbb{R}, \quad x^2 - 2xy + y^2 \geq 0$$
Smtlink

Yan Peng’s ACL2 book that calls Z3 at the back end, supports

- basic types: booleanp, integerp, real, rationalp, real/rationap, symbolp.
- FTY types using: defprod, deflist, defalist, defoption
- basic functions: binary-+, binary-*, unary-/, unary--,
 equal, <, implies, if, not, and lambda
Polynomials & Counterexamples

Basic example: \(x, y \in \mathbb{R}, \)

\[x^2 - 2xy + y^2 \geq 0 \]

Can be proven in ACL2:

- but would require proving lemmas, instantiating particular theorems, etc.
- Arithmetic books don’t help with automation here.

Much easier with Smtlink... Let’s go take a look!
Polynomials & Counterexamples

e.g., Are there integers $a, b \geq 0$ satisfying

$$(b \geq 2) \land (-a + b \leq 1) \land (3a + 2b \leq 12) \land (2a + 3b \leq 12)$$

In ACL2, try to prove:

$$(\text{not} \ (\text{and} \ (\geq b \ 2) \ (\leq (+ (- a) b) \ 1) \ (\leq (+ (* 3 a) (* 2 b)) \ 12) \ (\leq (+ (* 2 a) (* 3 b)) \ 12)))$$

ACL2 returns:

Possible counter-example found: $((B \ 2) \ (A \ 1))$
What if your counterexample is algebraic but not rational? E.g., for $x \in \mathbb{R}$,

$$x(x^2 - 2) = 0 \implies x = 0$$

An S-expression representing the polynomial for which x is a root is returned:

$$(+ (^ x 2) (- 2))$$
Uninterpreted functions

We can prove theorems involving functions that Z3 doesn’t know. E.g., for \(x, y, z \in \mathbb{R} \), \(z \in (0, 1) \), \(n, m \in \mathbb{N}_{>0} \),

\[
m < n \implies 2z^nxy \leq z^m(x^2 + y^2)
\]

Proof:

\[
0 \leq z^n(x - y)^2 = z^n(x^2 + y^2 - 2xy) \leq z^m(x^2 + y^2) - 2z^nxy
\]

Used: \(z^n \geq 0 \), \(z^m \geq 0 \), \(z^m \geq z^n \).

Idea: If you understand the human proof, you can give the Smtlink proof.
Smtlink hints

From expt example:

:smtlink-custom (
 :functions (
 (expt :formals ((r real/rationalp)
 (i real/rationalp))
 :returns ((ex real/rationalp))
 :level 0))
 :hypotheses (((< (expt z n) (expt z m)))
 (((< 0 (expt z m)))
 (((< 0 (expt z n)))))
 :int-to-rat t)

➤ :functions – list of functions, with formal arguments, and expansion level (:level 0 is uninterpreted)

➤ :hypotheses – theorems that are true in ACL2 which Smtlink can use to help with the proof

➤ :int-to-rat – coerce all integers to reals (!)
Why real?

Why might we want to use real numbers?

- Real arithmetic is easier than mixed integer/real in Z3.

What’s the worst that can happen?

- If the theorem is true for the reals, then it’s true for the integers.
- If the theorem isn’t true for the reals but true for the integers, then the Z3 proof fails.
- If the theorem isn’t true for the reals nor the integers, then the Z3 proof fails.
- ACL2 logical world still OK.

Caution:

- (equal (/ x 0) 0), see XDOC\(^1\)
- Other logical issues (e.g., are the models of Z3 and ACL2 compatible?)

\(^1\)or [books]/projects/smtlink/examples/examples.lisp
Uninterpreted types

Reasoning about objects that aren't natively supported by Z3.

(encapsulate
 (((abstract-p *) => *))
 (local
 (defun abstract-p (x)
 (acl2::any-p x))))

(defthm abstract-example
 (implies (abstract-p x)
 (equal x x))
 :hints("Goal"
 :smtlink (:abstract (abstract-p)))))

Smtlink requires a type-recogniser for each free variable in the hypotheses.
Uninterpreted types

For scalar $a \in \mathbb{R}$, vectors $u, v \in V$, inner product
$\langle - , - \rangle : V \times V \rightarrow \mathbb{R}$, we have

$$\langle u - av, u - av \rangle = \cdots$$

$$= \langle u, u \rangle + (-a)\langle u, v \rangle + (-a)\langle v, u \rangle + (-a)(-a)\langle v, v \rangle \quad \text{bilinearity}$$

$$= \langle u, u \rangle + (-a)\langle u, v \rangle + (-a)\langle u, v \rangle + (-a)(-a)\langle v, v \rangle \quad \text{commutativity}$$

$$= \langle u, u \rangle - 2a\langle u, v \rangle + a^2\langle v, v \rangle \quad \text{field operations}$$

A key step in the proof of Cauchy-Schwarz.
Conclusion

- We saw some existing applications of Smtlink.
- Future applications: matrices, lattice-based encryption.
- What do you want to do?
- Caution: logic
References

- expt example:
 /books/projects/smtlink/examples/examples.lisp

Thank you!