
VSTTE 2012 Verification Competition

Jean-Christophe Filliâtre, Andrei Paskevich, Aaron Stump

8–10 November 2012

For every problem, except Problem 2, we give an informal description and a suggested
implementation in pseudocode. It is up to the participants to come up with a suitable
specification (loop invariants, data structure invariants, pre- and postconditions, etc.).
In Problem 2, on the contrary, we provide a formal specification and let the participants
devise a conforming implementation.

In the problem statements, a type int is used to denote integers. Participants are free
to interpret this type either as a type of mathematical, unbounded integers, or as a type
of machine, bounded integers. In the latter case, participants may have to strengthen
specifications to be able to prove the absence of overflows. We assume arrays to be
indexed from 0.

1 Two-Way Sort (50 points)

We want to sort an array of Boolean values (assuming false < true) using only swaps.

Implementation.

swap(a: array of boolean, i: int, j: int) :=

t <- a[i];

a[i] <- a[j];

a[j] <- t

two_way_sort(a: array of boolean) :=

i <- 0;

j <- length(a) - 1;

while i <= j do

if not a[i] then

i <- i+1

elseif a[j] then

j <- j-1

else

swap(a, i, j);

i <- i+1;

j <- j-1

endif

endwhile

1

Verification Tasks.

1. Safety. Verify that every array access is made within bounds. 5 points.

2. Termination. Prove that function two way sort always terminates. 5 points.

3. Behavior. Verify that after execution of function two way sort, the following prop-
erties hold.

(a) Array a is sorted in increasing order. 20 points.

(b) Array a is a permutation of its initial contents. 20 points.

2 Combinators (100 points)

The Turing-complete language of S and K combinators is sometimes used in compilation
of functional programming languages. For this problem, you will write a simple inter-
preter for combinators, and prove several properties about this interpreter. The syntax
of combinators is defined by

terms t ::= S | K | (t t)

We will use a call-by-value (CBV) interpreter, based on this definition of contexts:

CBV contexts C ::= � | (C t) | (v C)
values v ::= K | S | (K v) | (S v) | ((S v) v)

The expression C[t] denotes the term that we obtain by replacing � with t in context C.
It is recursively defined as follows:

�[t] = t
(C t1)[t] = (C[t] t1)
(v C)[t] = (v C[t])

The single-step reduction relation → can then be defined this way:

C[((K v1) v2)] → C[v1]
C[(((S v1) v2) v3)] → C[((v1 v3) (v2 v3))]

The reduction relation is the reflexive transitive closure →∗ of the single-step reduction
relation. We will also write t 6→ if there is no t′ such that t→ t′. For example, K 6→.

Implementation Task.

1. Define a data type for representing combinator terms and implement a function
reduction which, when given a combinator term t as input, returns a term t′ such
that t→∗ t′ and t′ 6→, or loops if there is no such term. 10 points.

2

Verification Tasks.

1. Prove that if reduction(t) returns t′, then t→∗ t′ and t′ 6→. 40 points.

2. Prove that function reduction terminates on any term which does not contain S.
25 points.

3. Consider the meta-language function ks defined by

ks 0 = K
ks (n + 1) = ((ks n) K)

Prove that reduction applied to the term (ks n) returns K when n is even, and
(K K) when n is odd. 25 points.

3 Ring Buffer (150 points)

We want to implement a queue data structure using a ring buffer that can be described
with the following type declaration:

type ring_buffer = record

data : array of int; // buffer contents

size : int; // buffer capacity

first: int; // queue head, if any

len : int; // queue length

end

A ring buffer is an array data of fixed size size where we store the len queue elements
starting from index first. There are two possible situations. If first + len ≤ size,
then the queue elements are stored consecutively within data:

x1 x2 . . . xlen
↑
first

On the contrary, if first + len > size, then the queue wraps over the end of data and
continues from index 0:

. . . xlen x1 x2

↑
first

A ring buffer is said to be full when len = size and empty when len = 0.
In this description, we fixed the type of queue elements to type int. However, partici-

pants are encouraged to implement and prove a generic data structure, using for example
polymorphic types, type classes, generics, etc.

3

Implementation. You are supposed to implement the following operations:

create(n) takes a positive integer n as argument and returns a new ring buffer with size
n and length 0 (no element).

create(n: int): ring_buffer :=

return new ring_buffer(data = new array[n] of int;

size = n;

first = 0;

len = 0)

clear(b) takes a ring buffer b as argument and empties it.

clear(b: ring_buffer) :=

b.len <- 0

head(b) takes a ring buffer b as argument and returns the first element in the queue.

head(b: ring_buffer): int :=

return b.data[b.first]

You may either impose as a precondition that b is not empty or raise an exception
when b is empty.

push(b, x) takes a ring buffer b and an element x as arguments, and adds x at the end
of the queue.

push(b: ring_buffer, x: int) :=

b.data[(b.first + b.len) mod b.size] <- x;

b.len <- b.len + 1

You may either impose as a precondition that b is not full or raise an exception
when b is full.

pop(b) takes a ring buffer b as argument, pops off its head (first element in the queue),
and returns it.

pop(b: ring_buffer): int :=

r <- b.data[b.first];

b.first <- (b.first + 1) mod b.size;

b.len <- b.len - 1;

return r

You may either impose as a precondition that b is not empty or raise an exception
when b is empty.

4

Verification Tasks.

1. Safety. Verify that every array access is made within bounds. 30 points.

2. Behavior. Verify the correctness of your implementation w.r.t. the first-in first-out
semantics of a queue. 100 points.

3. Harness. The following test harness should be verified. 20 points.

test (x: int, y: int, z: int) :=

b <- create(2);

push(b, x);

push(b, y);

h <- pop(b); assert h = x;

push(b, z);

h <- pop(b); assert h = y;

h <- pop(b); assert h = z;

4 Tree Reconstruction (150 points)

An unlabeled binary tree can be uniquely characterized by the list of depths of its leaves.
For example, the following tree:

corresponds to the list 1, 3, 3, 2. On the contrary, there are list of positive integers that
correspond to no binary tree. We want to recreate a binary tree given a list of leaf depths,
or fail if there is no such tree.

We start with two abstract data types for trees and integer lists. A binary tree is either
a leaf or a binary node. For the purpose of implementation, we provide two constructors:

type tree

Leaf(): tree

Node(l:tree, r:tree): tree

Regarding lists, we assume the following signature:

type list

is_empty(s: list): boolean // check whether s is empty

head(s: list): int // returns the head of the list

pop(s: list) // pops the head of the list

Here, the list data structure is imperative: the pop function removes the head element of
the list, if any. Functions is empty and head do not modify the list. We accept solutions
that use any other data structure for integer lists, including purely applicative ones (with
appropriate changes to the code below).

5

Implementation. The following algorithm computes the binary tree or reports failure.
You can implement fail either by raising an exception, by returning null, or in any other
reasonable way.

build_rec(d: int, s: list): tree :=

if is_empty(s) then fail; endif

h <- head(s);

if h < d then fail; endif

if h = d then pop(s); return Leaf(); endif

l <- build_rec(d+1, s);

r <- build_rec(d+1, s);

return Node(l, r)

build(s: list): tree :=

t <- build_rec(0, s);

if not is_empty(s) then fail; endif

return t

Verification Tasks.

1. Soundness. Verify that whenever function build successfully returns a tree the
depths of its leaves are exactly those passed in the argument list. 30 points.

2. Completeness. Verify that whenever function build reports failure there is no tree
that corresponds to the argument list. 60 points.

3. Termination. Prove that function build always terminates. 30 points.

4. Harness. The following test harness should be verified:

• Verify that build applied to the list 1, 3, 3, 2 returns the tree Node(Leaf,

Node(Node(Leaf, Leaf), Leaf)). 10 points.

• Verify that build applied to the list 1, 3, 2, 2 reports failure. 30 points.

5 Breadth-First Search (150 points)

A directed graph is a set of vertices together with a set of arcs. If x and y are vertices,
we note x → y when there is an arc from x to y and we call y a successor of x. A path
of length n from a vertex x0 to a vertex xn is a sequence of vertices x0, . . . , xn, possibly
with repetitions, such that

x0 → x1 → x2 → . . .→ xn−1 → xn.

The purpose of this problem is to verify an algorithm computing the length of the shortest
path from one vertex to another using breadth-first search.

For the purpose of the implementation, we assume abstract data types for vertices
and finite sets of vertices:

6

type vertex

type vertex_set

Then the graph is defined by a unique function succ returning the successors of a given
vertex:

succ(v: vertex): vertex_set

Implementation. The following algorithm computes the length of the shortest path
from source to dest, reports failure, or diverges. Variables V, C, and N are finite sets of
vertices; {} stands for the empty set and {x} for the singleton set containing x. Variable
d is an integer.

bfs(source: vertex, dest: vertex): int :=

V <- {source};

C <- {source};

N <- {};

d <- 0;

while C is not empty do

remove one vertex v from C;

if v = dest then return d; endif

for each w in succ(v) do

if w is not in V then

add w to V;

add w to N;

endif

endfor

if C is empty then

C <- N;

N <- {};

d <- d+1;

endif

endwhile

fail "no path"

Verification Tasks.

1. Soundness. Verify that whenever function bfs returns an integer n this is indeed
the length of the shortest path from source to dest. 100 points.

A partial score of 50 points is attributed if it is only proved that there exists a path
of length n from source to dest.

2. Completeness. Verify that whenever function bfs reports failure there is no path
from source to dest. 50 points.

7

