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Takeuchi’s Tarai Function

For integer inputs, =, v, z,

—h

t(x,y, 2) & if x <y then vy

else t( t(x —1,vy,2),
t(y_ 1,2,58),
t(Z T 17x7y) )

John McCarthy proved this recursion
terminates and ¢ can be computed without

any recursion,

t(x,y,z) = if x<y then y
else if y<z then =z

else z.



McCarthy’'s Measure

measure(z,y, z) & measure1(z — v,z — y)

where

measurey (m,n) <

if m<0O then O
else if n>2
then m4+nn—-1)/2-1
elseif n>0 then m
else if n=-1
then (m+4+1)(m+42)/2-1
else (m—n)(m—n+1)/2—m— 1.



J Moore’'s Simpler Measure

Early Boyer-Moore theorem prover, THM,
used to verify termination and to show ¢
satisfies the simpler nonrecursive equation.

Lexicographical ordering on triples of
nonnegative integers:

m(z,y,2) €
< m]_(iC, Y, Z), mQ(.CU, Y, Z)) m3($, Y, Z) >

where

o
Q)
_h

mi(x,y,z) < if <y then 0 else 1,

mg(:c,y,z) <~ max(x,y,z)—min(x,y,z),

m3(x,y, z) £ x — min(x,vy, 2).
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Knuth's Generalization

Generalize the tarai function to higher
dimensions:

For integer inputs, z1,xo,...,xTm,
def
t(x1,zo,...,xm) &
if 1 <zp then =z
else t( t(x1 —1,zo,...,Tm),

t(iBQ — 173337 <. ,CUm,.CE]_),

t(iIJm o 175617 s ,ZUm_]_) )



Knuth’s Two Questions

1. Are there total functions on the integers
that satisfy the recursive equation based
on the definition?

That is, are there total functions
f(x1,2o,...,2m) ONn the integers that
satisfy the equation

f(xl,azg,. . ,xm) —
if x1 <zo then =z
else f( f(x1 —1,20,...,2m),
f(£U2—1,£U3,...,CUm,£U]_),
f(fUm_ 173317"'7'73777,—1) )?

2. Does the recursion terminate for all
integer inputs?



Question 1: Can the recursive
equation be satisfied?

McCarthy proved when m = 3:

The function

t(x1, 20, 23) <€ if r1 < xo then zo

—h

else if xzo < x3 then z3
else x4

satisfies the equation

t(rx1,z0,23) = if 21 <xo then x;
else  t( t(zx1 —1,z5,23),
t(xo — 1,23,71),
t(zz — 1,21,22) ).



Question 1: Can the recursive
equation be satisfied?

Knuth notes when m = 4:

The function

t(x1,x2,23,24) %e:f
if x1 <xzp then x5
else if xp < x3 then z3
else if z3 <xyg then x4
else x4

satisfies the equation

t(z1, 22,73, %4) =
if x1 <zxzp then x»
else t( t(x1 —1,zp,23,24),
t(zo — 1,23,74,%1),
t(z3 — 1,24, 71,22),
t(xg — 1,21,20,23) ).
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Question 1: Can the recursive
equation be satisfied?

Conjecture

The function
t(rx1,2,...,2m) <
if (Gk<m)(x1>20>-+-> T < :Ijk_|_1)
then CBk_|_1

else x4

satisfies the equation

t(x]_,CUQ,---,xm) —
if 1 <zp then z;
else t( t(x1 —1,20,...,2m),
t(xo — 1,23,...,Tm,21),
t(xm - 1733]_7 <. 737m—1) )
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Question 1: Can the recursive
equation be satisfied?

Knuth's Counterexample, when m =5

Left side
t(5,3,2,0,1) =1

Right side

t(5,3,2,0,1) = t(t(4,3,2,0,1),
t(2,2,0,1,5),
t(1,0,1,5,3),
t(—1,1,5,3,2),
t(0,5,3,2,0) )

t(1,2,1,1,5)
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Question 1: Can the recursive
equation be satisfied?

Knuth proposes a solution

def

f(x173727---737m) <~
if (Jk<m)(x1>z0>- >z < :Ck_|_1)
then g(z1,z2,...,Tk41)
else x4

Here the “function” g takes a variable
number (at least two) of integer inputs.

def
g(il’}]_,.CBQ, R 733]) <~

if =2 then x»
else if z1 =20+ 1 then g(zo,...,2;)
else if zo =z3+ 1 then max(z3,z;)
else z;
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Question 1: Can the recursive
equation be satisfied?

Knuth's Challenge

Theorem 4. The function f(z1,22,...,2m)
satisfies the m-dimensional tarai recurrence.

That is,
f(xlawa")xm) —
if 1 <xo then =z,
else f( f(:cl—l,CBQ,---,me)a
f(xQ_ 1,$3,...,$m,$1),
f(.CBm—l,.CB]_,...,CUm_]_) )

Open Problem 4. Prove Theorem 4 by
computer.



Question 1: Can the recursive
equation be satisfied?
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Question 1: Can the recursive
equation be satisfied?

Bailey’'s Counterexample, when m = 6
Left side

f(8,6,4,3,1,2) =g(8,6,4,3,1,2) =2
Right side inner evaluations

f(7,6,4,3,1,2)

9(7,6,4,3,1,2)

= ¢(6,4,3,1,2)

= max(3,2) =3
f(5,4,3,1,2,8) = ¢(5,4,3,1,2)

= ¢(4,3,1,2)

= ¢(3,1,2) =2
f(3,3,1,2,8,6) = ¢(3,3) =3
f(2,1,2,8,6,4) = ¢g(2,1,2) =¢(1,2) =2
f(0,2,8,6,4,3) = ¢(0,2) =2
f(1,8,6,4,3,1) = ¢(1,8) =8

Right side outer evaluation
f(3,2,3,2,2,8) =¢(3,2,3) =9(2,3) =3
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Question 1: Can the recursive
equation be satisfied?

Knuth'’s Reaction to Counterexample

Date: Wed, 16 Feb 2000 13:42:50 -0800
(PST)

To: cowles
Subject: note from Prof Knuth
Dear Dr Cowles,

Wow!

or maybe I should say Ow!

or Whoa!

or Woel!

Thanks again for another crucial news flash.

This is certainly a great way to make me
believe in mechanical verification. I presume
that the case m=5 will still hold up to
scrutiny by ACL2 ...
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Question 1: Can the recursive
equation be satisfied?

Bailey Proposes a Correction

f(x1,22,...,2m) «
if (Jk<m)(z1>20> > <Tpyq)
then gp(x1,22,...,2+1)
else x4

Here the “function” g, like g, takes a variable
number (at least two) of integer inputs.

def
gb(xlax27 R 737]) <~

if 7 <3 then uz;
else if r1=xzo+1 or zo>x3+1
then gy(xo,...,z;)
else  max(zz,z;)



Question 1: Can the recursive
equation be satisfied?

Machine Verification Pending

Conjecture 1. The function
f(x1,22,...,2zm), With g, replacing g, satisfies
the m-dimensional tarai recurrence.

That is,
f(ZU]_,ZCQ,...,ZCm) —
if 1 <xzp then x5
else f( f(z1—1,z0,...,2m),
f(xQ_ 173337"'7337717331)7
flem —1,21,...,Tm_1) )-

Proof checked by hand.



Question 2: Does the recursion
terminate?

May Depend on Evaluation Rule

Knuth points out,

“...a call-by-need technique will always
terminate when applied to the recursive
equation for t(xz1,...,xm).

If 21 > 20 > -+ >z < x141, the values

y; = t(x; — 1,2;41,...,7;—1) need be expanded
only for 1 <:< k-4 1, and this will be
sufficient to determine the value of
t(y1,...,ym) = t(x1,...,2m) in a finite number
of steps.”

Knuth's argument depends on the faulty
proof given for Theorem 4.



Question 2: Does the recursion
terminate?

Machine Verification Pending

Conjecture 2. The recursion for computing
t(x1,...,zm) always terminates using the
following version of Knuth’s call-by-need.

If 21 > 20> - >z < gy g, it is sufficient to
expand the values y; = t(x; — 1, 254-1,...,Ti—1)
only for 1 < <k, to determine the value of
t(y1, ..., ym) = t(x1,...,Tm).

Note the change from k4 1 to k£ in this range
for 1.



Question 2: Does the recursion
terminate?

This is an Interesting Question!

Knuth continues,

“Therefore we come to a final question,
which will perhaps prove to be the most
interesting aspect of the present investigation,
particularly if it has a negative answer.

... If so, the tarai recurrence would be an
extremely interesting example to include in all
textbooks about recursion.”

Open Problem 5. Does the m-dimensional
tarai recursive equation define a total
function, for all m > 3, if it is expanded fully
(without call-by-need)?
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Question 2: Does the recursion
terminate?

An Interesting Example — of What?
Negative answer to Open Problem 5:
The m-dimensional tarai function shows that

LISP's evaluation rules do not always
compute least fixed-points.

Lisp’s evaluation rules:

e innermost first, left to right

e call by value

Simpler examples are known.



Question 2: Does the recursion
terminate?

A Simpler Example

LISP’s evaluation rules do not always
compute least fixed-points.

L(z,y) & if =0 then 0
else L(x—1,L(x,y)).

Only one function, over the nonnegative
integers, satisfies the recursive equation.

L(z,y) €0

Recursion does not terminate.
Assuming left-to-right, innermost-first

evaluation order.
8-d



Question 2: Does the recursion
terminate?

A Counterexample, when m = 4

t(3,2,1,5)

t( t(2,2,1,5),
t(1,1,5,3),
t(0,5,3,2),
t(4,3,2,1) )

t(2,1,5,t(4,3,2,1))

t(2,1,5,t( t(3,3,2,1),
t(2,2,1,4),
t(1,1,4,3),
t(0,4,3,2) ))
t(2,1,5,t(3,2,1,4))
t(2,1,5,t( t(2,2,1,4),
t(1,1,4,3),
t(0,4,3,2),
t(3,3,2,1) ))
t(2,1,5,t(2,1,4,3))



Question 2: Does the recursion

terminate?

Counterexample continued

From last line on previous slide:

t(3,2,1,5)

Initial inputs

= t(2,1,5,t(2,1,4,3))

t(2,1,5,t( t(1,1,4,3),
t(0,4,3,2),
t(3,3,2,1),

t(2,2,1,4) ))

t(2,1,5,t(1,4,3,2))

t(2,1,5,4)

t( t(1,1,5,4),
t(0,5,4,2),
t(4,4,2,1),
t(3,2,1,5) )

repeated.
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Progress Using ACL2

Applying ACL2, in an inelegant way with
brute force, verifies the following:

e For 2 <m <7, Bailey's function f of
Conjecture 1 satisfies the m-dimensional
tarai recurrence.

Thus ACL2 verifies Conjecture 1 for
2<m<T.

e For 2 < m <5, Knuth's version of f
computes the same values as Bailey’s
version of f given in Conjecture 1.

Together, these items finish the mechanical
verification that Knuth's f satisfies the
recursive equation, for m = 5 (as well as for
2<m<4).



Progress Using ACL2

Version 2.4 Linear Arithmetic Misbehavior

Fixed in Version 2.5.

Note the (INTEGERP FORTH).

(THM

(IMPLIES (AND (INTEGERP THIRD)
(INTEGERP FORTH)
(INTEGERP FIFTH)
(< FORTH THIRD)
(< FIFTH FORTH)
(<= (+ -1 THIRD) FORTH)
(<= (+ -1 FORTH) FIFTH)

(EQUAL FIRST
(GB (LIST (+ -1 FIRST)
SECOND))))



Progress Using ACL2

Version 2.4 Linear Arithmetic Misbehavior
Now there is no (INTEGERP FORTH).

This simplifies, using linear arithmetic ...

Goal’

(IMPLIES (AND (INTEGERP (+ 1 FORTH))
(INTEGERP (+ 1 FIFTH))
(INTEGERP FIFTH)
(< (+ 1 FORTH) (+ -1 FIRST))
(< (+ 1 FIFTH) (+ 1 FORTH))
(< (+ 1 FORTH) (+ -1 -1 FIRST))
(<= (+ -1 1 FORTH) (+ 1 FIFTH))

(EQUAL FIRST
(GB (LIST (+ -1 FIRST)
(+ -1 FIRST))))).
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Progress Using ACL2
Version 2.4 Linear Arithmetic Misbehavior

This forcibly simplifies, using linear
arithmetic

But simplification reduces this to T ...
q.e.d. (given one forced hypothesis)

Modulo the following forced goal
[1]Goal, below, will focus on
(ACL2-NUMBERP FORTH),
which was forced in
Goal’, above,
by the linearization of
(EQUAL FORTH (+ 1 FIFTH)).

We now undertake Forcing Round 1.
[1]Goal

(ACL2-NUMBERP FORTH) .

*okkokkokkk FATLED skokskokskokskok



Progress Using ACL2
ACL?2 verifies

e For 2 < m <7, Bailey's function f of
Conjecture 1 satisfies the m-dimensional
restricted tarai recurrence:

f(x]_,ili‘Q,...,CUm) —
if 1 <xo then =z
else f( f(z1—1,2o,...,Zm),
f(xQ T 17:837 cee 7:877%:81)7
Flap— 1,250, 3p1) )

e Note k£ and K/ in the last line above.
k satisfies x1 > a0 > --- > xp < .
E'=(k4+ 1) mod'm.
imod’'m=j ¢€{1,...,m} >:=j modm.

e f becomes a “function” with a variable
number (at least two) of integer inputs.
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Progress Using ACL2

Coping with a variable number of inputs

e T he "functions” g, g, and the restricted
tarai recurrence take a variable number of
inputs

e Lisp provides an obvious implementation
of functions with a variable number of
iInputs:

Form the inputs into a list and use that
list as the single input to the function.



Progress Using ACL2

ACL2 verifies

e For 2 < m <7, Bailey's function f of
Conjecture 1 is the unique total function
on the integers that satisfies the
m-dimensional tarai recurrence.

e For 2 < m <7, Bailey's function f of
Conjecture 1 is the unique total function
on the integers that satisfies the
m-dimensional restricted tarai recurrence.

o For 2 < m <7, the recursive calls on the
right side of the m-dimensional restricted
tarai recurrence, always terminate.

Thus ACL2 verifies Conjecture 2 for
2<m<7T.
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Progress Using ACL2

Use Encapsulate to consistently axiomatize
four functions tarai, tarai-1st, rTarai, and
rTarai-1st sO that for 2<m <7

e tarai is a total function that satisfies the
m~dimensional tarai recurrence.

e tarai returns an integer whenever the
input is a list of integers of length 2 or
more.

e rTarai IS a total function that satisfies the
m~dimensional restricted tarai recurrence.

The axioms specifically restrict their validity
to input lists of lengths 2—7.

Bailey's f is used as the witness,
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Progress Using ACL2

e Uniqueness is proved by cases.
One case for each list length from 2-7.

Induction is used to prove each case.

e [ he measure of lists of integers
(z1,xo,...,Tm), used for the induction:

Based on the lexicographical ordering on
pairs (k,nfix(z1 — x5)).

Here k is the integer such that
X1 > x> > < T

k' equals (k+ 1) mod’/m.

e Use same measure to demonstrate
termination of the restricted tarai
recurrence.
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Current Work

Use ACL2 to elegantly prove for all integers
m > 2.

e Bailey's f uniquely satisfies the
m~dimensional tarai and restricted tarai
recurrences.

e [ he recursion always terminates for the
restricted tarai recurrence.
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