Knuth's Generalization of Takeuchi's Tarai Function

by

Tom Bailey

John Cowles

University of Wyoming

Takeuchi's Tarai Function

For integer inputs, x, y, z,

$$t(x,y,z) \ \stackrel{\mathsf{def}}{\Leftarrow} \ \mathsf{if} \ x \leq y \ \mathsf{then} \ y$$

$$\mathsf{else} \ t(\ t(x-1,y,z), \ t(y-1,z,x), \ t(z-1,x,y) \ \mathsf{)}.$$

John McCarthy proved this recursion terminates and t can be computed without any recursion,

$$t(x,y,z) = \text{if } x \leq y \text{ then } y$$
 else if $y \leq z \text{ then } z$ else $x.$

McCarthy's Measure

```
 \text{measure}(x,y,z) \stackrel{\text{def}}{\Leftarrow} \text{measure}_1(x-y,z-y)  where  \text{measure}_1(m,n) \stackrel{\text{def}}{\Leftarrow}  if m \leq 0 then 0 else if n \geq 2 then m+n(n-1)/2-1 else if n \geq 0 then m else if n = -1 then (m+1)(m+2)/2-1 else (m-n)(m-n+1)/2-m-1.
```

J Moore's Simpler Measure

Early Boyer-Moore theorem prover, THM, used to verify termination and to show t satisfies the simpler nonrecursive equation.

Lexicographical ordering on triples of nonnegative integers:

$$m(x, y, z) \stackrel{\text{def}}{\Leftarrow}$$
 $< m_1(x, y, z), m_2(x, y, z), m_3(x, y, z) >$

where

$$m_1(x,y,z) \stackrel{\text{def}}{\Leftarrow} \text{ if } x \leq y \text{ then 0 else 1}, \ m_2(x,y,z) \stackrel{\text{def}}{\Leftarrow} \max(x,y,z) - \min(x,y,z), \ m_3(x,y,z) \stackrel{\text{def}}{\Leftarrow} x - \min(x,y,z).$$

Knuth's Generalization

Generalize the tarai function to higher dimensions:

For integer inputs, x_1, x_2, \ldots, x_m , $t(x_1, x_2, \ldots, x_m) \overset{\text{def}}{\Leftarrow}$ if $x_1 \leq x_2$ then x_2 else $t(\ t(x_1-1, x_2, \ldots, x_m),$ $t(x_2-1, x_3, \ldots, x_m, x_1),$ \vdots $t(x_m-1, x_1, \ldots, x_{m-1})\).$

Knuth's Two Questions

1. Are there total functions on the integers that satisfy the recursive equation based on the definition?

That is, are there total functions $f(x_1, x_2, \ldots, x_m)$ on the integers that satisfy the equation

$$f(x_1, x_2, \dots, x_m) =$$
if $x_1 \le x_2$ then x_2
else $f(\ f(x_1 - 1, x_2, \dots, x_m),$
 $f(x_2 - 1, x_3, \dots, x_m, x_1),$
 \vdots
 $f(x_m - 1, x_1, \dots, x_{m-1})$)?

2. Does the recursion terminate for all integer inputs?

McCarthy proved when m = 3:

The function

$$t(x_1,x_2,x_3) \stackrel{\mathrm{def}}{\Leftarrow} \text{ if } x_1 \leq x_2 \text{ then } x_2$$
 else if $x_2 \leq x_3$ then x_3 else x_1

satisfies the equation

$$t(x_1,x_2,x_3) = \text{if } x_1 \leq x_2 \text{ then } x_2$$
 else $t(t(x_1-1,x_2,x_3),t(x_2-1,x_3,x_1),t(x_3-1,x_1,x_2)).$

Knuth notes when m = 4:

The function

$$t(x_1,x_2,x_3,x_4) \stackrel{\mathrm{def}}{\Leftarrow}$$
 if $x_1 \leq x_2$ then x_2 else if $x_2 \leq x_3$ then x_3 else if $x_3 \leq x_4$ then x_4 else x_1

satisfies the equation

$$t(x_1,x_2,x_3,x_4)=$$
if $x_1 \leq x_2$ then x_2
else $t(\ t(x_1-1,x_2,x_3,x_4),$
 $t(x_2-1,x_3,x_4,x_1),$
 $t(x_3-1,x_4,x_1,x_2),$
 $t(x_4-1,x_1,x_2,x_3)$).

Conjecture

The function

$$t(x_1,x_2,\ldots,x_m) \stackrel{\text{def}}{\Leftarrow}$$
 if $(\exists k < m)(x_1 > x_2 > \cdots > x_k \leq x_{k+1})$ then x_{k+1} else x_1

satisfies the equation

$$t(x_1, x_2, \dots, x_m) =$$
if $x_1 \le x_2$ then x_2
else $t(\ t(x_1 - 1, x_2, \dots, x_m),$
 $t(x_2 - 1, x_3, \dots, x_m, x_1),$
 \vdots
 $t(x_m - 1, x_1, \dots, x_{m-1})$).

Knuth's Counterexample, when m=5

Left side

$$t(5,3,2,0,1) = 1$$

Right side

$$t(5,3,2,0,1) = t(t(4,3,2,0,1), t(2,2,0,1,5), t(1,0,1,5,3), t(-1,1,5,3,2), t(0,5,3,2,0))$$

$$= t(1,2,1,1,5)$$

$$= 2$$

Knuth proposes a solution

$$f(x_1,x_2,\ldots,x_m) \stackrel{\mathsf{def}}{\Leftarrow}$$
 if $(\exists k < m)(x_1 > x_2 > \cdots > x_k \leq x_{k+1})$ then $g(x_1,x_2,\ldots,x_{k+1})$ else x_1

Here the "function" g takes a variable number (at least two) of integer inputs.

$$g(x_1,x_2,\ldots,x_j) \stackrel{\mathsf{def}}{\Leftarrow}$$
 if $j=2$ then x_2 else if $x_1=x_2+1$ then $g(x_2,\ldots,x_j)$ else if $x_2=x_3+1$ then $\max(x_3,x_j)$ else x_j

Knuth's Challenge

Theorem 4. The function $f(x_1, x_2, ..., x_m)$ satisfies the m-dimensional tarai recurrence.

That is,

$$f(x_1, x_2, \dots, x_m) =$$
if $x_1 \le x_2$ then x_2
else $f(\ f(x_1 - 1, x_2, \dots, x_m),$
 $f(x_2 - 1, x_3, \dots, x_m, x_1),$
 \vdots
 $f(x_m - 1, x_1, \dots, x_{m-1})$).

Open Problem 4. Prove Theorem 4 by computer.

References

Textbook Examples of Recursion.
Chapter 22 in
D.E. Knuth,
Selected Papers on the Analysis of
Algorithms,
CSLI Publications,
Distributed by Cambridge University Press,
2000.

Update of paper in V. Lifschitz, Editor, Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, Academic Press, 1991.

Bailey's Counterexample, when m=6 Left side

$$f(8,6,4,3,1,2) = g(8,6,4,3,1,2) = 2$$

Right side inner evaluations

$$f(7,6,4,3,1,2) = g(7,6,4,3,1,2)$$

$$= g(6,4,3,1,2)$$

$$= \max(3,2) = 3$$

$$f(5,4,3,1,2,8) = g(5,4,3,1,2)$$

$$= g(4,3,1,2)$$

$$= g(3,1,2) = 2$$

$$f(3,3,1,2,8,6) = g(3,3) = 3$$

$$f(2,1,2,8,6,4) = g(2,1,2) = g(1,2) = 2$$

$$f(0,2,8,6,4,3) = g(0,2) = 2$$

$$f(1,8,6,4,3,1) = g(1,8) = 8$$

Right side outer evaluation

$$f(3,2,3,2,2,8) = g(3,2,3) = g(2,3) = 3$$

Knuth's Reaction to Counterexample

Date: Wed, 16 Feb 2000 13:42:50 -0800 (PST)

To: cowles

Subject: note from Prof Knuth

Dear Dr Cowles,

Wow!

or maybe I should say Ow!

or Whoa!

or Woe!

Thanks again for another crucial news flash.

. . .

This is certainly a great way to make me believe in mechanical verification. I presume that the case m=5 will still hold up to scrutiny by ACL2 . . .

Bailey Proposes a Correction

$$f(x_1,x_2,\ldots,x_m) \stackrel{\text{def}}{\Leftarrow}$$
 if $(\exists k < m)(x_1 > x_2 > \cdots > x_k \leq x_{k+1})$ then $g_b(x_1,x_2,\ldots,x_{k+1})$ else x_1

Here the "function" g_b , like g, takes a variable number (at least two) of integer inputs.

$$g_b(x_1,x_2,\ldots,x_j) \stackrel{\mathrm{def}}{\Leftarrow}$$
 if $j \leq 3$ then x_j else if $x_1=x_2+1$ or $x_2>x_3+1$ then $g_b(x_2,\ldots,x_j)$ else $\max(x_3,x_j)$

Machine Verification Pending

Conjecture 1. The function $f(x_1, x_2, ..., x_m)$, with g_b replacing g, satisfies the m-dimensional tarai recurrence.

That is,

$$f(x_1, x_2, \dots, x_m) =$$
if $x_1 \le x_2$ then x_2
else $f(\ f(x_1 - 1, x_2, \dots, x_m),$
 $f(x_2 - 1, x_3, \dots, x_m, x_1),$
 \vdots
 $f(x_m - 1, x_1, \dots, x_{m-1})$).

Proof checked by hand.

May Depend on Evaluation Rule

Knuth points out,

"...a call-by-need technique will always terminate when applied to the recursive equation for $t(x_1, \ldots, x_m)$.

If $x_1 > x_2 > \cdots > x_k \le x_{k+1}$, the values $y_i = t(x_i - 1, x_{i+1}, \dots, x_{i-1})$ need be expanded only for $1 \le i \le k+1$, and this will be sufficient to determine the value of $t(y_1, \dots, y_m) = t(x_1, \dots, x_m)$ in a finite number of steps."

Knuth's argument depends on the faulty proof given for **Theorem 4.**

Machine Verification Pending

Conjecture 2. The recursion for computing $t(x_1, \ldots, x_m)$ always terminates using the following version of Knuth's call-by-need.

If $x_1 > x_2 > \cdots > x_k \le x_{k+1}$, it is sufficient to expand the values $y_i = t(x_i - 1, x_{i+1}, \dots, x_{i-1})$ only for $1 \le i \le k$, to determine the value of $t(y_1, \dots, y_m) = t(x_1, \dots, x_m)$.

Note the change from k + 1 to k in this range for i.

This is an Interesting Question!

Knuth continues,

"Therefore we come to a final question, which will perhaps prove to be the most interesting aspect of the present investigation, particularly if it has a negative answer.

... If so, the tarai recurrence would be an extremely interesting example to include in *all* textbooks about recursion."

Open Problem 5. Does the m-dimensional tarai recursive equation define a total function, for all $m \geq 3$, if it is expanded fully (without call-by-need)?

An Interesting Example – of What?

Negative answer to Open Problem 5:

The m-dimensional tarai function shows that LISP's evaluation rules do not always compute $least\ fixed$ -points.

Lisp's evaluation rules:

- innermost first, left to right
- call by value

Simpler examples are known.

A Simpler Example

LISP's evaluation rules do *not* always compute *least fixed-points*.

$$L(x,y) \stackrel{\text{def}}{\Leftarrow} \text{ if } x = 0 \text{ then } 0$$
 else $L(x-1,L(x,y)).$

Only one function, over the nonnegative integers, satisfies the recursive equation.

$$L(x,y) \stackrel{\text{def}}{\Leftarrow} 0$$

Recursion does *not* terminate.
Assuming left-to-right, innermost-first evaluation order.

A Counterexample, when m=4

$$t(3,2,1,5) = t(t(2,2,1,5), t(1,1,5,3), t(0,5,3,2), t(4,3,2,1))$$

$$= t(2,1,5,t(4,3,2,1))$$

$$= t(2,1,5,t(t(3,3,2,1), t(2,2,1,4), t(1,1,4,3), t(0,4,3,2)))$$

$$= t(2,1,5,t(t(2,2,1,4), t(1,1,4,3), t(1,1,4,4,3), t(1,1,4,4,3), t(1,$$

Counterexample continued

From last line on previous slide:

$$t(3,2,1,5) = t(2,1,5,t(2,1,4,3))$$

$$= t(2,1,5,t(t(1,1,4,3),t(0,4,3,2),t(3,3,2,1),t(2,2,1,4)))$$

$$= t(2,1,5,t(1,4,3,2))$$

$$= t(2,1,5,4)$$

$$= t(t(1,1,5,4),t(0,5,4,2),t(4,4,2,1),t(3,2,1,5))$$

Initial inputs repeated.

Applying ACL2, in an inelegant way with brute force, verifies the following:

- For $2 \le m \le 7$, Bailey's function f of **Conjecture 1** satisfies the m-dimensional tarai recurrence.
 - Thus ACL2 verifies **Conjecture 1** for 2 < m < 7.
- For $2 \le m \le 5$, Knuth's version of f computes the same values as Bailey's version of f given in **Conjecture 1**.

Together, these items finish the mechanical verification that Knuth's f satisfies the recursive equation, for m=5 (as well as for $2 \le m \le 4$).

Version 2.4 Linear Arithmetic Misbehavior

Fixed in Version 2.5. Note the (INTEGERP FORTH). (THM (IMPLIES (AND (INTEGERP THIRD) (INTEGERP FORTH) (INTEGERP FIFTH) (< FORTH THIRD)</pre> (< FIFTH FORTH) (<= (+ -1 THIRD) FORTH)(<= (+ -1 FORTH) FIFTH)

(EQUAL FIRST

...)

(GB (LIST (+ -1 FIRST)

SECOND))))

9-a

Version 2.4 Linear Arithmetic Misbehavior Now there is no (INTEGERP FORTH). This simplifies, using linear arithmetic ... Goal' (IMPLIES (AND (INTEGERP (+ 1 FORTH)) (INTEGERP (+ 1 FIFTH)) (INTEGERP FIFTH) (< (+ 1 FORTH)(+ -1 FIRST))</pre> (< (+ 1 FIFTH)(+ 1 FORTH)) (< (+ 1 FORTH) (+ -1 -1 FIRST))(<= (+ -1 1 FORTH) (+ 1 FIFTH))(EQUAL FIRST (GB (LIST (+ -1 FIRST)(+ -1 FIRST))))).

9-b

Version 2.4 Linear Arithmetic Misbehavior

```
This forcibly simplifies, using linear
arithmetic ...
But simplification reduces this to T ...
q.e.d. (given one forced hypothesis)
Modulo the following forced goal ...
[1] Goal, below, will focus on
(ACL2-NUMBERP FORTH),
which was forced in
 Goal', above,
  by the linearization of
  (EQUAL FORTH (+ 1 FIFTH)).
We now undertake Forcing Round 1.
[1]Goal
(ACL2-NUMBERP FORTH).
****** FATLED *****
```

ACL2 verifies

• For $2 \le m \le 7$, Bailey's function f of **Conjecture 1** satisfies the m-dimensional restricted tarai recurrence:

$$f(x_1, x_2, \dots, x_m) =$$
if $x_1 \le x_2$ then x_2
else $f(\ f(x_1 - 1, x_2, \dots, x_m),$
 $f(x_2 - 1, x_3, \dots, x_m, x_1),$
 \vdots
 $f(x_k - 1, x_{k'}, \dots, x_{k-1})$).

- Note k and k' in the last line above. k satisfies $x_1>x_2>\cdots>x_k\leq x_{k'}$. $k'=(k+1) \bmod' m$. $i \bmod' m=j\in\{1,\ldots,m\}\ni i\equiv j \bmod m$.
- f becomes a "function" with a variable number (at least two) of integer inputs.

Coping with a variable number of inputs

- \bullet The "functions" $g,\ g_b,\ {\rm and\ the\ } restricted$ tarai recurrence take a variable number of inputs
- Lisp provides an obvious implementation of functions with a variable number of inputs:

Form the inputs into a list and use that list as the single input to the function.

ACL2 verifies

- For $2 \le m \le 7$, Bailey's function f of **Conjecture 1** is the *unique* total function on the integers that satisfies the m-dimensional tarai recurrence.
- For $2 \le m \le 7$, Bailey's function f of **Conjecture 1** is the *unique* total function on the integers that satisfies the m-dimensional restricted tarai recurrence.
- For $2 \le m \le 7$, the recursive calls on the right side of the m-dimensional restricted tarai recurrence, always terminate. Thus ACL2 verifies **Conjecture 2** for 2 < m < 7.

Use Encapsulate to consistently axiomatize four functions tarai, tarai-lst, rTarai, and rTarai-lst so that for $2 \le m \le 7$

- tarai is a total function that satisfies the m-dimensional tarai recurrence.
- tarai returns an integer whenever the input is a list of integers of length 2 or more.
- rTarai is a total function that satisfies the m-dimensional restricted tarai recurrence.

The axioms specifically restrict their validity to input lists of lengths 2–7.

Bailey's f is used as the witness,

• Uniqueness is proved by cases.

One case for each list length from 2–7.

Induction is used to prove each case.

• The measure of lists of integers (x_1, x_2, \ldots, x_m) , used for the induction:

Based on the lexicographical ordering on pairs $(k, \text{nfix}(x_1 - x_2))$.

Here k is the integer such that $x_1 > x_2 > \cdots > x_k \leq x_{k'}$.

k' equals $(k+1) \mod' m$.

 Use same measure to demonstrate termination of the restricted tarai recurrence.

Current Work

Use ACL2 to elegantly prove for all integers $m \geq 2$:

- Bailey's f uniquely satisfies the m-dimensional tarai and restricted tarai recurrences.
- The recursion always terminates for the restricted tarai recurrence.