Verification of Pipelined Machines in ACL2*

Panagiotis Manolios

Department of Computer Sciences, University of Texas at Austin
pete@cs.utexas.edu
http://www.cs.utexas.edu/users/pete

Abstract. We describe the ACL2 techniques used in a new approach to
the verification of pipelined machines. Our notion of correctness is based
on WEBs (Well-founded Equivalence Bisimulations) [16, 18] and implies
that the pipelined machine and the machine defined by the instruction
set architecture have the same computations up to finite stuttering. We
verify various variants of Sawada’s simple machine [22, 21], including
machines with exceptions, interrupts, non-determinism, and ALUs de-
scribed in part at the netlist level. Our proofs contain no intermediate
abstractions and are almost automatic, e.g., the verification of the base
machine does not require any user supplied theorems. To motivate the
need for a new notion of correctness we show that the variant of the
Burch and Dill notion of correctness [4] used by Sawada can be satisfied
by incorrect machines.

1 Introduction

The specification used to prove a pipelined machine correct is an instruction
set architecture (ISA). The ISA describes the interface between the hardware
and software and contains the programmer visible components of the machine.
A pipelined machine is correct if it satisfies a certain relationship with the ISA.
There is no wide agreement on the “right” notion of correctness, but perhaps
the most common approach is that of Burch and Dill [4]. One of the difficulties
with specifying correctness is that we want to account for non-terminating be-
havior. If we were to restrict ourselves to terminating programs, we could say
that a pipelined machine is correct if for any terminating program, both the
pipelined machine and the ISA machine halt in the same final state. However,
there are interesting non-terminating programs such as operating systems and
transmission protocols that run on these machines and the traditional approach
of stating correctness as a relationship between initial and final states cannot be
used, as there is no final state. We are therefore forced to think about infinite
computations.

We start with an example. Consider a simple ISA machine with instructions
that are four-tuples consisting of an opcode, a target register, and two source
registers. The state components of the ISA machine that are of interest are
the program counter and the contents of registers ra and rb. The MA (micro

* Support for this work was provided by the SRC under contract 99-TJ-685.

architecture) machine is a pipelined machine with three stages.! A pipeline is
analogous to an assembly line. The pipeline consists of several stages each of
which performs part of the computation required to complete an instruction.
When the pipeline is full many instructions are in various degrees of completion.
A diagram of the MA machine appears in Fig. 1. The three stages are fetch,
set-up, and write. During the fetch stage, the instruction pointed to by the PC
(program counter) is retrieved from memory and placed into latch 1. During the
set-up stage, the contents of the source registers (of the instruction in latch 1)
are retrieved from the register file and sent to latch 2 along with the rest of the
instruction in latch 1. During the write stage, the appropriate ALU (arithmetic
logic unit) operation is performed and the result is used to update the value of
the target register.

File
Latch Latch
MemMOry jmgpt | > -

Fig. 1. A simple three-stage pipeline machine.

Suppose that the contents of memory are as follows.

Inst
0 add rb ra ra
1 add ra rb ra

When this simple two-line code fragment is executed on the ISA and MA
machines, we get the following traces.

Clock ISA MA Inst 0 Inst 1
0 (0, (1,1)) (0, (01,01))
1 (1, (1,2)) (1, {01,01)) Fetch
2 (2, (3,2)) (2, (01,01)) Set-up Fetch
3 (2, (01,10)) Write Stall
4 (
5 (

-, {(01,10)) Set-up
-, (11,10)) Write

! This machine is based on the machine described by Sawada [22, 21].

The rows correspond to steps of the machines, e.g., row Clock 0 corresponds
to the initial state, Clock 1 to the next state, and so on. The ISA and MA
columns contain the relevant parts of the state of the machines: a pair consisting
of the PC and the register file (itself a pair consisting of registers ra and rb). The
contents of the register file of the ISA machine are numbers in decimal and the
contents of the register file of the MA machine are bit-vectors (we show only the
two low-order bits). The final two columns indicate what stage the instructions
are in (only applicable to the MA machine).

In the initial state (in row Clock 0) the PCs of the ISA and MA machines
contain the value 0 (indicating that the next instruction to execute is Inst 0) and
both registers have the value 1. In the next ISA state (in row Clock 1), the PC is
incremented and the add instruction performed, i.e., register rb is updated with
the value ra + ra = 2. The final entry in the ISA column contains the state of
the ISA machine after executing Inst 1.

After one step of the MA machine, Inst 0 completes the fetch phase and
the PC is incremented to point to the next instruction. After step 2 (in row
Clock 2), Inst 0 completes the set-up stage, Inst 1 completes the fetch phase,
and the PC is incremented. After step 3, Inst 0 completes the write-back phase
and the register file is updated for the first time with rb set to 10 (2 in binary).
However, Inst 1 is stalled during step 3 because one of its source registers is rb,
the target register of the previous instruction. Since the previous instruction has
not completed, the value of rb is not available and Inst 1 is stalled for one cycle.
In the next cycle, Inst 1 enters the set-up stage and Inst 2 enters the fetch stage
(not shown). Finally, after step 5, Inst 1 is completed and register ra is updated.

Comparing the partial traces of the ISA and MA machines and thinking
about how to relate them makes it clear that we should stick to one representa-
tion of numbers. Below, the partial traces of the ISA and MA machines appear
in the first two columns, with numbers represented in decimal.

ISA MA MA MA
R S oy o)
2, (3.2)) 2, (11) C(;)it (0, (1,1) R:) 2, (3.2))

(2, (12) VRS (L (L2) e

. (1,2)) (1, (1,2))

0 (3.2)) @, (3.2))

Notice that the PC differs in the two traces and this occurs because the
pipeline, initially empty, is being filled and the PC points to the next instruction
to fetch. If the PC were to point to the next instruction to commit (i.e., the next
instruction to complete), then we would get the trace shown in column 3. Notice
that in column 3, the PC does not change from 0 to 1 until Inst 0 is committed
in which case the next instruction to commit is Inst 1. We now have a trace that
is the same as the ISA trace except for stuttering; after removing the stuttering
we have, in column 4, the ISA trace.

To state correctness we use a refinement map, a function that maps MA
states to ISA states. In the above example we mapped MA states to ISA states

by transforming bit-vectors into decimal numbers and by transforming the PC.
Proving correctness amounts to relating MA states with the ISA states they
map to under the refinement map and proving a WEB (Well-founded Equiv-
alence Bisimulation). Proving a WEB guarantees that MA states and related
ISA states have related computations up to finite stuttering. This is a strong
notion of equivalence, e.g., a consequence is that the two machines satisfy the
same CTL*\ X properties.? This includes the class of next-time free safety and
liveness (including fairness) properties, e.g., one such property is that the MA
machine cannot deadlock (because the ISA machine cannot deadlock).

Why “up to finite stuttering”? Because we are comparing machines at differ-
ent levels of abstraction: the pipelined machine is a low-level implementation of
the high-level ISA specification. When comparing systems at different levels of
abstraction, it is often the case that the low-level system requires several steps
to match a single step of the high-level system.

Why use a refinement map? Because data can be represented in different
ways, e.g., the MA machine represents numbers in binary whereas the ISA ma-
chine uses a decimal representation. In addition, there may be components in
one system that do not appear in the other, e.g., the MA machine has latches
but the ISA machine does not. Yet another reason is that components present
in both systems may have different behaviors, as is the case with the PC above.
Notice that the refinement map affects how MA and ISA states are related, not
the behavior of the MA machine.

The theory of refinement maps and WEBSs is presented in Section 2. In Sec-
tion 3 we discuss supporting ACL2 books. In Section 4 we discuss the deter-
ministic variants of Sawada’s machine [21, 22]3. The variants include machines
with exceptions, fleshed-out ALUs, and combinations of these features. We also
discuss the use of macros to automate the proof process. In Section 5 we discuss
the non-deterministic variants and macros. Conclusions and related work appear
in Section 6.

A more detailed explanation of how refinement maps and WEBs relate to
the correctness of pipelined machines is presented in a companion paper [13].
Some key observations to keep in mind as you read the paper follow. Note that
we prove the same theorem for each of the pipelined machine variants, includ-
ing the variant with interrupts and exceptions. Other approaches [21] introduce
new notions of correctness to deal with such features. Our characterization of
correctness allows us to prove an MA machine correct with respect to an ISA
machine by looking only at single steps of the machines. For the examples we
consider, this leads to dramatically shorter proofs (as already mentioned, some
proofs are automatic) and does not require intermediate abstractions. A practi-
cal and noteworthy feature of WEBs is their compositionality; this allows us to
decompose the proof of the correctness of the complicated machines into man-

2 OTL* is a braching-time temporal logic; CTL*\X is CTL* without the next-time
operator X.

3 Sawada uses the machine to explain issues of correctness and proof techniques. It is
a toy version of the FM9801, the final machine verified in Sawada’s thesis.

ageable steps. All of the ACL2 definitions and theorems described in this paper
are available from the author’s Web page [14].

2 Well-founded Equivalence Bisimulation

2.1 Preliminaries

IN denotes the natural numbers. (Qz : r : b) denotes a quantified expression,
where @ is the quantifier, z is the bound variable, r is the range of z (true
if omitted), and b is the body. Function application is sometimes denoted by
an infix dot “.” and is left associative. Function composition is denoted by o.
The disjoint union operator is denoted by W. For a relation R, we abbreviate
(s,w) € R by sRw. A well-founded structure is a pair (W, <) where W is a set
and < is a binary relation on W such that there are no infinitely decreasing
sequences on W with respect to <. Spacing is used to reinforce binding: more
space indicates lower binding.

Definition 1 (Transition System)

A Transition System (TS) is a structure (S, --+, L), where S is a non-empty set
of states, --+ C S x S is a left-total (every state has a successor) transition
relation, and L is a labeling function which maps each state to a label.

For TS M, state s (of M), and temporal logic formula f, M, s |= f denotes
that f holds at state s of model M. A path, o, is a sequence of states such that
for adjacent states s and u, s --+ u. A path, o, is a fullpath if it is infinite. fp.o.s
denotes that o is a fullpath starting at s.

2.2 Well-Founded Equivalence Bisimulation

Definition 2 (Well-Founded Equivalence Bisimulation (WEB [16, 18]))
B is a well-founded equivalence bisimulation on TS M = (S, --+, L) iff:

1. B is an equivalence relation on S; and
2. (Vs,w € S:sBw:L.s= L.w); and
3. There exists function rank : S x S — W, with (W, <) well-founded, and
(Vs,u,w € S:sBw A s--+u:
(Fv:w -+ v:uBv) V
(uBw A rank(u,u) < rank(s,s)) V
(Fv:w --+v:sBv A rank(u,v) < rank(u,w)))

We call a pair (rank, (W, <)) satisfying condition 3 in the above definition, a
well-founded witness. The third WEB condition guarantees that related states
have the same computations up to stuttering. If states s and w are in the same
class and s can transit to u, then one of the following holds.

1. The transition can be matched with no stutter, in which case, u is matched
by a step from w.

2. The transition can be matched but there is stutter on the left (from s), in
which case, u and w are in the same class and the rank function decreases
(to guarantee that w is forced to take a step eventually).

3. The transition can be matched but there is stutter on the right (from w),
in which case, there is some successor v of w in the same class as s and the
rank function decreases (to guarantee that u is eventually matched).

To prove a relation is a WEB, note that reasoning about single steps of —»
suffices. In addition we can often get by with a rank function of one argument.
The example WEB in Fig. 2 demonstrates this, as the function tag has one
argument,.

Fig. 2. The graph denotes a transition system, where circles denote states, the color of
the circles denotes their label, and the transition relation is denoted by a dashed line.
States related by the equivalence relation B are joined by a solid line. To check that B
is a WEB, let rank(u,v) = tag of v, and use the well-founded witness (rank, (IN, <)).

Theorem 1 (cf. [2, 18]) If B is a WEB on TS M and sBw, then s and w have
the same fullpaths up to stuttering and for any CTL*\X formula f, M,s = f

A consequence of Theorem 1 is that states related by a WEB satisfy the same
next-time free formulae of LTL (Linear Temporal Logic) and the same safety and
progress properties (up to stuttering). This is a strong notion of equivalence; that
we can use it profitably depends on the use of refinement maps.

2.3 Refinement and Composition

In this section, we define a notion of refinement and show that WEBs can be
used in a compositional fashion. The compositionality of WEBs allows us to
prove the correctness of pipelined machines in stages.

Definition 3 (Refinement)
Let M = (S,--+,L), M' = (§',--+", L"), r : § — S'. We say that M is a
refinement of M' with respect to refinement map r if there exists an equivalence
relation, B, on S & .S’ (the disjoint union of S and S’) such that sB(r.s) for all
s € S and B is a WEB on the TS (SW S',--» & --+', L), where L.s = L'(r.s)
for s an S state and £.s = L'(s) otherwise.

The pipelined machine discussed in the introduction is a refinement of the
ISA machine with respect to a refinement map that transforms bit-vectors into
decimal numbers and transforms the PC as previously described.

Theorem 2 (Composition ([15], cf. [16]))

If (S, --+, L) is a refinement of (S',--+', L') with respect to r, and (S’,--+', L") is
a refinement of (S",--+", L") with respect to q, then (S, --+, L) is a refinement
of (8", --+"", L'y with respect to qor.

We will use the above theorem to prove correctness in stages. An advantage
of proving correctness in this way is that we can limit the difference between
the machine descriptions from one stage to the next. This allows the proofs
go through automatically because there is enough structural similarity between
machines that ACL2 can decide equivalence forthwith. Yet another advantage is
that changes to the lower-level machines can be localized.

3 Supporting Books

We use several general-purpose books to support automation. These include the
standard "top-with-meta" and "ihs" books for reasoning about arithmetic as
well as the books "nth-thms", "alist-thms", and "defun-weak-sk" for rea-
soning about nth and update-nth, alists, and quantification, respectively.

To prove correctness, we define interpreters for the ISA and MA machines
and prove a WEB on the disjoint union of the machines, under some refinement
map. Machine states are represented as lists and components of states are ac-
cessed and updated with nth and update-nth, respectively. The proof requires
that we compare components of stepped states and much of this can be done au-
tomatically with rewrite rules that simplify and normalize nth and update-nth
expressions. The book "nth-thms" contains the rewrite rules we found useful for
this purpose and is based on the approach taken by Greve, Wilding, and Hardin
on page 131 of reference [6]. We also use alists (e.g., register files are represented
as lists of register name, value pairs) and the book "alist-thms" contains some
simple rules, similar to those in "nth-thms", for reasoning about alists.

The book "defun-weak-sk" is used to reason about existential quantifica-
tion. Recall that the macro defun-sk is used to implement quantification in
ACL2 by introducing witness functions and constraints. For example, the quan-
tified formula (3z :: P(z,y)) can be rendered in ACL2 as the function EP with
the constraints (P x y) = (EP y) and (EP y) = (P (W y) y). To see that
this corresponds to quantification, notice that the first constraint gives us one

direction of the argument: it says that if any value of x makes (P x y) true (i.e.,
if (3z :: P(z,y))) then (EP y) is true. This constraint allows us to establish an
existentially quantified formula by exhibiting a witness, but the constraint can
be satisfied if EP always returns t. The second constraint gives us the other di-
rection. It introduces the witness function W and requires that (EP y) is true iff
(P (W y) y) is true. As a result, if (EP y) is true, then some value of x makes
(P x y) true. As is mentioned in the ACL2 documentation [11], this idea was
known to Hilbert. An ACL2 script corresponding to the above follows.* Notice
that the constraints on EP are the constraints on EP-witness (which corresponds
to our W).

(defstub P(x y) t)

(defun-sk EP (y)
(exists (x) (P x y)))

:props EP

:props EP-witness

We wish to use quantification and encapsulation in the following way. We
prove that a set of constrained functions satisfy a quantified formula. We then
use functional instantiation [1, 12] to show that a set of functions satisfying
these constraints also satisfy the (analogous) quantified formula. We want this
proof obligation to be generated by macros but have found that the constraints
generated by the quantified formulae complicate the design of such macros. The
following observation has allowed us to simplify the process. The quantified for-
mulae are established using witness functions, as is often the case. Therefore,
only the first constraint generated by defun-sk is required for the proof. We
defined the macro defun-weak-sk which generates only this constraint, e.g.,
executing the ACL2 script

(defstub P(x y) t)
(defun-weak-sk E (y)

(exists (x) (P x y)))
:props E
shows that the only constraint on Eis (P x y) = (E y). By functional instanti-
ation, any theorem proved about E also holds when E is replaced by EP (since EP
satisfies the constraint on E). We use defun-weak-sk in our scripts and at the
very end we prove the defun-sk versions of the main results by functional in-
stantiation (a step taken to make the presentation of the final result independent
of our macros).

4 Deterministic Machines

4.1 ISA Definition

The first machine we define is ISA. The main function is ISA-step, a function
that steps the ISA machine, i.e., it takes an ISA state and returns the next

* props shows all of the properties in the ACL2 world that are associated with a
symbol.

ISA state. For all the machines, an instruction is a five-tuple consisting of the
symbol Inst, an opcode, a target register, and two source registers. We have the
following definitions in the book "Inst".

(defun Inst (opcode rc ra rb) (list ’Inst opcode rc ra rb))

(defmacro Inst-opcode () 1)
(defmacro Inst-rc () 2)
(defmacro Inst-ra () 3)
(defmacro Inst-rb () 4)

An ISA state is a four-tuple as shown below. The following definitions are in
the book "ISA".

(defun ISA-state (pc regs mem)
(list ’ISA pc regs mem))

(defun ISA-p (x)
(equal (car x) ’ISA))

(defmacro ISA-pc () 1)
(defmacro ISA-regs () 2)
(defmacro ISA-mem () 3)

The definition of the step function, ISA-step, of the ISA machine is out-
lined below. The instruction referenced by pc (the program counter) is fetched
from memory. Based on the opcode, the appropriate instruction is performed.
The code for subtraction is not shown since it is similar to the code for addi-
tion. Recall that regs, the register file, is an alist. The functions value-of and
update-valuation are defined in the "alist-thms" book and are used to access
and update alists.

(defun add-rc (ra rb rc regs)
(update-valuation rc
(+ (value-of ra regs)
(value-of rb regs))
regs))

(defun ISA-add (rc ra rb ISA)
(ISA-state (1+ (nth (ISA-pc) ISA))
(add-rc ra rb rc (nth (ISA-regs) ISA))
(nth (ISA-mem) ISA)))

(defun ISA-default (ISA)
(ISA-state (1+ (nth (ISA-pc) ISA))
(nth (ISA-regs) ISA)
(nth (ISA-mem) ISA)))

10

(defun ISA-step (ISA)
(let ((inst (value-of (nth (ISA-pc) ISA) (nth (ISA-mem) ISA))))
(let ((op (nth (Inst-opcode) inst))
(rc (nth (Inst-rc) inst))
(ra (nth (Inst-ra) inst))
(rb (nth (Inst-rb) inst)))
(cond ((equal op 0) ; add
(ISA-add rc ra rb ISA))
((equal op 1) ; sub
(ISA-sub rc ra rb ISA))
(t (ISA-default ISA))))))

4.2 MA Definition

ISA is the specification for MA, a three stage pipelined machine. It corresponds
to the simple machine described by Sawada [21, 22] and is the simplest pipelined
machine we consider. An MA state is a six-tuple consisting of the symbol MA, a
program counter, a register file, a memory, and two latches. The first latch is
a six-tuple consisting of the symbol latchl, a flag which indicates if the latch
is valid, an opcode, the target register, and two source registers. The second
latch is a six-tuple consisting of the symbol latch2, a flag as before, an opcode,
the target register, and the values of the two source registers. The definition of
MA-step follows. The definitions in this section are in the book "MA".

(defun MA-step (MA)
(MA-state (step-pc MA)
(step-regs MA)
(nth (MA-mem) MA)
(step-latchl MA)
(step-latch2 MA)))

Step-pc is defined below. A stall occurs if both latches are valid and the
target register of the instruction in latch2 is one of the source registers.®

(defun step-pc (MA)
(if (stall-condp MA) (nth (MA-pc) MA) (1+ (nth (MA-pc) MA))))
(defun stall-condp (MA)
(let ((latchl (nth (MA-latchl) MA))
(latch2 (nth (MA-latch2) MA)))
(and (nth (latch2-validp) latch2)
(nth (latchil-validp) latchl)
(bor (equal (nth (latchl-ra) latchil)
(nth (latch2-rc) latch2))
(equal (nth (latchil-rb) latchl)
(nth (latch2-rc) latch2))))))

® (Bor x y) translates to (if x ’t y). We use this macro because (or x y) trans-
lates to (if x x y) and two occurrences of x can slow down the theorem prover.

11

To step the register file, we check that latch2 is valid and that an arithmetic
operation is to be performed. If so, we update the target register with the result
obtained from the ALU.

(defun ALU-output (op vall val2)
(if (equal op 0)
(+ vall val2)
(- vall val2)))
(defun step-regs (MA)
(let ((latch2 (nth (MA-latch2) MA)))
(if (and (nth (latch2-validp) latch2)
(bor (equal (nth (latch2-op) latch2) 0)
(equal (nth (latch2-op) latch2) 1)))
(update-valuation (nth (latch2-rc) latch2)
(ALU-output (nth (latch2-op) latch2)
(nth (latch2-ra-val) latch2)
(nth (latch2-rb-val) latch2))
(nth (MA-regs) MA))
(nth (MA-regs) MA))))

If there is no stall, we step latch 1 by fetching the instruction in memory
pointed to by the pc.

(defun step-latchl (MA)
(let ((latchl (nth (MA-latchil) MA))
(inst (value-of (nth (MA-pc) MA) (nth (MA-mem) MA))))
(cond ((stall-condp MA)

latchi)

(t (latchl t
(nth (Inst-opcode) inst)
(nth (Inst-rc) inst)
(nth (Inst-ra) inst)
(nth (Inst-rb) inst))))))

If latch 1 is valid and there is no stall, latch 1 and the contents of the register
file are used to step latch 2.

(defun step-latch2 (MA)
(let ((latchl (nth (MA-latchl) MA)))
(if (nth (latchil-validp) latchl)
(latch2 (not (stall-condp MA))
(nth (latchil-op) latchl)
(nth (latchil-rc) latchl)
(value-of (nth (latchl-ra) latchil)
(nth (MA-regs) MA))
(value-of (nth (latchl-rb) latchil)
(nth (MA-regs) MA)))
(update-nth (latch2-validp) nil (nth (MA-latch2) MA)))))

12

4.3 Refinement Map Definitions

To prove that MA is a correct implementation of ISA, we prove a WEB on the

(disjoint) union of the machines, with MA states labeled by the appropriate refine-

ment map. Once the required notions are defined, the macros implementing our

proof methodology can be used to prove correctness without any user supplied

theorems. In this section, we present the definitions which make the statement

of correctness precise. The definitions in this section are in the book "MA-ISA".
The following function is a recognizer for “good” MA states.

(defun good-MA (MA)
(and (rationalp (nth (MA-pc) MA))
(let ((latchl (nth (MA-latchl) MA))
(latch2 (nth (MA-latch2) MA))
(NMA (committed-MA MA)))
(case (shift-pc latchl latch2)
0 t)
(1 (MA-= (MA-step NMA) MA))
(otherwise (MA-= (MA-step (MA-step NMA)) MA))))))

First, we require that pc, the program counter, is a rational. Such type restric-
tions are common. Next, we require that MA states are reachable from flushed
states (states with invalid latches). The reason for this restriction is that oth-
erwise MA states can be inconsistent (unreachable), e.g., consider an MA state
whose first latch contains an add instruction, but where there are no add in-
structions in memory. We check for this by stepping the committed state, the
state obtained by invalidating all partially completed instructions and altering
the program counter so that it points to the next instruction to commit.

(defun committed-MA (MA)
(let ((pc (nth (MA-pc) MA))
(regs (nth (MA-regs) MA))
(mem (nth (MA-mem) MA))
(latchl (nth (MA-latchl) MA))
(latch2 (nth (MA-latch2) MA)))
(MA-state
(- pc (shift-pc latchl latch2))
regs
mem
(update-nth (latchi-validp) nil latchl)
(update-nth (latch2-validp) nil latch2))))

The program counter is decremented depending on the number of valid latches.

(defun b-to-num (x)
(if x 1 0))
(defun shift-pc (latchl latch2)
(+ (b-to-num (nth (latchil-validp) latchl))
(b-to-num (nth (latch2-validp) latch2))))

13

Finally, we note that MA-= relates two MA states if they have the same pc, regs,
mem, and if their latches match, i.e., they have the same latch 1 or both states
have an invalid latch 1 and similarly with latch 2. Note that committed-MA per-
forms a kind of reverse flushing: instead of stepping the machine in an attempt
to complete pending instructions and reach a flushed state, committed-MA in-
validates pending instructions and adjusts the program counter accordingly. To
make sure that a state is not inconsistent, we check that it is reachable from
the corresponding committed state. Now that we have made precise what the
MA states are, the refinement map is:

(defun MA-to-ISA (MA)
(let ((MA (committed-MA MA)))
(ISA-state (nth (MA-pc) MA)
(nth (MA-regs) MA)
(nth (MA-mem) MA))))

The final definition required is that of the well-founded witness. The function
MA-rank serves this purpose by computing how long it will take an MA state to
commit an instruction. An MA state will commit an instruction in the next step
if its second latch is valid. Otherwise, if its first latch is valid it will be ready
to commit an instruction in one step. Otherwise, both latches are invalid and it
will be ready to commit an instruction in two steps.

(defun MA-rank (MA)
(let ((latchl (nth (MA-latchl) MA))
(latch2 (nth (MA-latch2) MA)))
(cond ((nth (latch2-validp) latch2) 0)
((nth (latchl-validp) latchil) 1)
(t 2))))

4.4 Proof of Correctness

To complete the proof it seems we have to: define the machine corresponding to
the disjoint union of ISA and MA, define a WEB that relates a (good) MA state s
to (MA-to-ISA s), define the well-founded witness, and prove that indeed the
purported WEB really is a WEB. We have implemented macros which automate
this. The macros are useful not only for this example, but also for the verification
of the rest of the deterministic machines we present in this paper and can be used
to show a WEB between other types of deterministic systems. (Non-deterministic
versions are described in Section 5.) The proof of correctness is completed with
the following three macro calls (in the book "MA-ISA").

(generate-full-system isa-step isa-p ma-step ma-p
ma-to-isa good-ma ma-rank)
(prove-web isa-step isa-p ma-step ma-p ma-to-isa ma-rank)
(wrap-it-up isa-step isa-p ma-step ma-p
good-ma ma-to-isa ma-rank)

14

The first macro, generate-full-system, generates the definition of B, the
purported WEB as well as R, the transition relation of the disjoint union of the
ISA and MA machines. The macro translates to the following. (Some declarations

and forward-chaining theorems used to control the theorem prover have been
elided.)

(progn
(defun wf-rel (x y) ...
(and (ISA-p x)
(MA-p y)
(good-MA y)
(equal x (MA-to-ISA y))))
(defun B (x y) ...
(bor (wf-rel x y)

(wf-rel y x)

(equal x y)

(and (MA-p x)
(MA-p y)
(good-MA x)
(good-MA y)

(equal (MA-to-ISA x) (MA-to-ISA y)))))
(defun rank (x)
(if (MA-p x) (MA-rank x) 0))
(defun R (x y) ...
(cond ((ISA-p x) (equal y (ISA-step x)))
(t (equal y (MA-step x)))))
L)

What is left is to prove that B—the reflexive, symmetric, transitive closure
of wf-rel—is a WEB with well-founded witness rank. We do this in two steps.
First, the macro prove-web is used to prove the “core” theorem (as well as some
“type” theorems not shown).

(defthm B-is-a-wf-bisim-core
(let ((u (ISA-step s))
(v (MA-step w)))
(implies (and (wf-rel s w)
(not (wf-rel u v)))
(and (wf-rel s v)
(e0-ord-< (MA-rank v) (MA-rank w))))))

Comparing B-is-a-wf-bisim-core with the definition of WEBs, we see that
B-is-a-wf-bisim-core does not contain quantifiers and it mentions neither B
nor R. This is on purpose as we use “domain-specific” information to construct
a simplified theorem that is used to establish the main theorem. To that end
we removed the quantifiers and much of the case analysis. For example, in the
definition of WEBS, u ranges over successors of s and v is existentially quantified
over successors of w, but because we are dealing with deterministic systems, u

15

and v are defined to be the successors of s and w, respectively. Also, wf-rel is
not an equivalence relation as it is not reflexive, symmetric, or transitive. Fi-
nally, we ignore the second disjunct in the third condition of the definition of
WEBs because ISA does not stutter. The justification for calling this the “core”
theorem is that we have proved in the book "det-encap-wfbisim" that a con-
strained system which satisfies a theorem analogous to B-is-a-wf-bisim-core
(and some “type” theorems) also satisfies a WEB. Using functional instantiation
we can now prove MA correct. The use of this domain-specific information makes
a big difference, e.g., when we tried to prove the theorem obtained by a naive
translation of the WEB definition (sans quantifiers), ACL2 ran out of memory
after 30 hours, yet the above theorem is now proved in about 11 seconds.

The final macro call generates the events used to finish the proof. We present
the generated events germane to this discussion below. The first step is to show
that B is an equivalence relation. This theorem is proved by functional instanti-
ation of a theorem in the book "det-encap-wfbisim".

(defequiv B
thints (("goal" :by (:functional-instance
encap-B-is-an-equivalence ...))))

The second WEB condition, that related states have the same label, is taken
care of by the refinement map. We show that rank is a well-founded witness.

(defthm rank-well-founded
(e0-ordinalp (rank x)))

We use functional instantiation and B-is-a-wf-bisim-core as described
above to prove the following.

(defun-weak-sk exists-w-succ-for-u-weak (w u)
(exists (v) (and (R w v) (B u v))))
(defun-weak-sk exists-w-succ-for-s-weak (w s)
(exists (v)
(and (R w V)
(B s v)
(e0-ord-< (rank v) (rank w)))))
(defthm
B-is-a-wf-bisim-weak
(implies (and (B s w)
(R s uw)
(or (exists-w-succ-for-u-weak w u)
(and (B u w)
(e0-ord-< (rank u) (rank s)))
(exists-w-succ-for-s-weak w s)))
:hints
(("goal" :by (:functional-instance b-is-a-wf-bisim-sk ...)))
:rule-classes nil)

16

We use defun-weak-sk for these definitions and for the proofs in the book
"det-encap-wfbisim" for the reasons outlined in Section 3. To make it easier for
the general ACL2 community to understand the results, we state them in terms
of the built-in macro defun-sk. The proof is a trivial functional instantiation,
since the single constraint generated by defun-weak-sk is one of the constraints
generated by defun-sk.

(defun-sk exists-w-succ-for-u (w u)
(exists (v) (and (R w v) (B uv))))
(defun-sk exists-w-succ-for-s (w s)
(exists (v)
(and (R w V)
(B s v)
(e0-ord-< (rank v) (rank w)))))
(defthm
B-is-a-wf-bisim
(implies (and (B s w)
(R s u))
(or (exists-w-succ-for-u w u)
(and (B u w)
(e0-ord-< (rank u) (rank s)))
(exists-w-succ-for-s w s)))
:hints
(("goal"

:by (:functional-instance B-is-a-wf-bisim-weak
(exists-w-succ-for-u-weak exists-w-succ-for-u)
(exists-w-succ-for-s-weak exists-w-succ-for-s))))

:rule-classes nil))

4.5 Comparison With Original Proof

The proof given by Sawada [22] uses a variant of the Burch and Dill notion of
correctness. The main theorem proved is that if the pipelined machine starts in
MAy, a flushed state, takes n steps to arrive at state MA,,, also a flushed state,
then there is some number m such that stepping the projection of MAy m steps
results in the projection of MA,,. The projection of an MA state is the ISA state
obtained from the program counter, register file, and memory of the MA state.
Since this notion of correctness requires a pipelined machine that can be flushed,
the machine defined by Sawada has an extra input signal which can be used to
flush the machine. We have no way (and no need) to flush MA.

Sawada also proves the “liveness” theorem that any pipelined state can be
flushed. These two theorems constitute his notion of correctness. We ask the in-
formal question, “Are there any pipelined machines that are obviously incorrect
but satisfy this notion of correctness?” If you consider deadlock an abhorrent

17

behavior, the answer if yes. Using Sawada’s proof scripts, we provide a mechani-
cally checked proof that the trivial pipelined machine with a next-state function
which invalidates the latches and keeps the PC, memory, and register file intact
satisfies this notion of correctness.® The proof is straightforward. The first the-
orem is established by choosing m to be 0. The second theorem holds because
the next state function invalidates the latches; therefore, the next state of any
state is flushed.

Flushing Proof of MA We can use flushing to prove that MA is a refinement of
ISA as follows. We define a function that flushes an MA state and use this function
to show that MA is a refinement of ISA. Notice that, in contrast to the proof by
Sawada, there is no trivial pipelined machine that will satisfy this notion of
correctness. This is because proving a WEB between a pipelined machine and
ISA implies that any ISA behavior can be matched by the pipelined machine;
since ISA has non-trivial behaviors so does the pipelined machine. Even so, this
proof is not satisfactory because the relationship between MA states and ISA
states is not clear, e.g., inconsistent MA states are related to ISA states. A full
discussion appears in the companion paper [13].

Theorem Proving Effort Finally, we compare the complexity of the proofs.
We consider only the books required for the proof; this includes neither the
books used to define the machines nor supporting general-purpose books. We
consider the books containing our macros to be part of the supporting books
because they were designed for general-purpose use and have been used with the
dozen or so proofs described in this paper. Since we proved the correctness of
MA without the use of any intermediate abstractions, invariants, or user-supplied
theorems, the size of the book containing the definitions required for the proof
is about 3K; the size of the files containing Sawada’s proof is about 94K. The
time required for our proof (including the loading of related books) is about 30
seconds on a 600MHz Pentium III; the time required for Sawada’s proof is about
460 seconds (on the same machine).

4.6 The Remaining Deterministic Machines

The remaining deterministic machines are named ISA128, MA128, MA128serial,
and MA128net. ISA128 is an ISA-level machine that is the specification for the
remaining pipelined machines. ISA128 differs from ISA as follows. It has a mul-
tiply instruction but no subtract instruction and the arithmetic operations are
mod 2'28. Tt deals with exceptions as follows: an ISA128 state has an extra field
containing an exception flag. If an overflow occurs, the exception flag is checked;

8 More insidious machines also satisfy this notion of correctness (but we do not pro-
vide mechanical proofs). Examples include machines that sometimes deadlock (in a
flushed state) and machines that spend some of their time performing computations
other than the ones expected.

18

if it is off, arithmetic mod 2'2® is performed; if the exception flag is on, an ex-
ception handler is called. The exception handler is a constrained function of the
program counter, register file, and memory that returns a new program counter,
register file, memory, and exception flag.

MA128 is a three-stage pipelined machine similar to MA but designed to ac-
commodate the ISA128 specification. Overflows are dealt with as follows: if an
overflow occurs during an arithmetic operation, then the partially executed in-
structions are invalidated” and the exception handler is called. The resulting
state is constrained to be flushed (i.e., both latches are invalid). The proof that
MA128 is a refinement of ISA128 is very similar to proof that MA is a refinement of
ISA. The same function names are used and the functions good-MA and MA-rank
are exactly the same as before while the functions committed-MA, MA-=, and
MA-to-ISA differ only in their treatment of the exception flag. As before, no
user supplied theorems are required.

MA128serial is similar to MA128, except that the ALU is defined in terms
of a serial adder and a multiplier based on the adder. The adder, multiplier,
and proof of their correctness are taken from Kaufmann, Manolios, and Moore
[10]. We prove that MA128serial is a refinement of MA128 and with Theorem 2,
we conclude that it is also a refinement of ISA128. The refinement map used
maps the bit-vectors in the register file and the second latch to numbers because
the ALU of MA128serial operates on bit-vectors, whereas MA128 operates on
integers. For the proof to go through, we need four theorems, but they are general
results about nfix and the relationship between convert-regs (used to convert
bit-vectors to numbers in the register file) and value-of and update-valuation
(the functions we use to access and update alists).

MA128net is a version of MA128 with an ALU defined in terms of a 128-bit
adder described in a netlist language (i.e., described in terms of Boolean func-
tions). We have a function that generates an adder of any size and we prove that
the adder generated is correct by relating it to the serial adder. We prove that
MA128net is a refinement of MA128serial, hence by composition, a refinement
of ISA128.

5 Non-Deterministic Machines

We have defined non-deterministic analogues of the deterministic machines pre-
sented in the previous section. The non-determinism arises because the next state
of the machines is a function of the current state and an interrupt signal, which is
free. Recall that the macros used in the previous section were designed for deter-
ministic machines, therefore, we have analogous macros for the non-deterministic
case. The differences between the macros arise from the differences in the next
state function mentioned above and in the generation of the transition relation
R, which, due to the non-determinism, requires quantification. For example, the

" The function committed-MA in the book "MA128" is used to perform the invalidation.
It is interesting that this function, originally conceived for verification purposes, is
used to define a more complicated machine.

19

following is generated by the macro generate-full-systemwhen applied to the
non-deterministic analogues of the ISA and MA machines of the previous section.

(defun R-int (x y int) ...
(cond ((ISA-p x) (equal y (ISA-step x int)))
(t (equal y (MA-step x int)))))
(defun-sk R (x y)
(exists (int) (R-int x y int)))

The non-deterministic machines differ from the deterministic machines as
follows. Their state contains an interrupt register which is used to record inter-
rupts. Their next state is obtained by first checking the interrupt register. If non-
empty, the interrupt handler is called (in MA-level machines, partially executed
instructions are aborted before the call). The interrupt handler is a constrained
function of the register file, memory, and interrupt register and returns a state
with the same program counter and register file, an empty interrupt register,
and a new (possibly modified) memory. If the interrupt register is empty, we
check if an interrupt has been raised. If so, the interrupt type is recorded in the
interrupt register (and with M A-level machines, partially executed instructions
are aborted). If not, we proceed as in the deterministic case.

Non-determinism has led to new notions of correctness in the literature. For
example, to deal with interrupts, a notion of correctness (still based on the Burch
and Dill notion, but different from the one used for deterministic machines) is
presented by Sawada [21]: if My is a flushed state and if taking n steps where
the interrupts at each step are specified by the list [results in a flushed state
M,,, then there is a number n' and a list I’ such that stepping the projection
of My n' steps with interrupt list I’ results in the projection of M,,. Notice
that a machine which always ignores interrupts satisfies this specification and is
therefore considered correct.

In contrast, since WEBs apply to non-deterministic systems, our notion of
correctness in the presence of interrupts remains the same, i.e., we prove the
pipelined machine is a refinement of its ISA specification. As a consequence, a
pipelined machine which ignores interrupts cannot be proven correct. Another
advantage is that our proof obligation is still about single steps of the machines,
as opposed to finite behaviors. As before, this makes the proof much simpler as
no intermediate abstractions are required.

6 Conclusions

Some of the early work on pipelined machine verification was based on skewed
abstraction functions [25, 5, 26]. The Burch and Dill notion of correctness, based
on flushing and commuting diagrams, was introduced later [4]. Theorem-proving
approaches include the work by Sawada and Hunt [23, 24, 21, 22]. They use
an intermediate abstraction called MAETT to verify some very complicated
machines. There are other theorem proving approaches as well [9, 8, 27]. Model-
checking approaches include the use of symmetry reductions and compositional

20

model-checking [17] and the use of assume-guarantee reasoning [7]. In addition,
decision procedures for Boolean logic with equality and uninterpreted function
symbols [3, 19] have been used to verify pipelined machines [3].

Our notion of correctness is motivated by the problems with the ubiquitous
Burch and Dill notion of correctness. We show with mechanical proof, that as
used by Sawada [21, 22], the Burch and Dill notion can be satisfied by pipelined
machines which deadlock. In contrast, our notion is based on WEBs and only
pipelined machines which have the same behaviors (under a refinement map) as
the instruction set architecture specification satisfy this notion of correctness.
We verified various extensions of Sawada’s simple pipelined machine [21, 22].
Our extensions include exception handling, interrupts, and ALUs described in
part at the netlist level; all of the proofs are available from the author’s Web
page [14]. Our proofs are very simple and in many cases automatic. The reasons
for the simplicity include:

1. We prove a theorem about a constrained system that is then invoked with
functional instantiation. This allows us to bypass much of the case analysis
and the reasoning about quantifiers that would otherwise be required.

2. We implemented macros that generate the disjoint union of the ISA and MA
machines and that generate proof obligations which take advantage of the
analysis mentioned immediately above.

3. Our notion of correctness can be proved by reasoning about single steps of
the machines (as opposed to reasoning about an arbitrary number of steps).
This helps us avoid the use of intermediate abstractions.

4. We used the compositionality of WEBs to decompose proofs.

5. We used functional instantiation to deal with exceptions and interrupts. As
a result, our proofs apply for any specific exception and interrupt handlers.

We have also exhibited a clear, compositional path from the verification of
term-level descriptions of pipelined machines to the verification of low-level de-
scriptions (e.g., netlist descriptions). For example, in the proof that MA128 is a
refinement of ISA128, the definition of the ALU is disabled; the result is that
ACL2 treats the ALU as an uninterpreted function. However, to verify that
MA128net is a refinement of MA128, we enable the definition of the ALU and
prove theorems relating a netlist description of the circuit to a serial adder
which is then related to addition on integers. This allows us to relate term-level
descriptions of machines to lower-level descriptions in a compositional way, e.g.,
it would not be too much work to use the floating-point multiplier of Russinoff
and Flatau [20].

For future work, we plan to look at more complicated machines, namely
machines with deeper pipelines, out-of-order execution, and richer instruction
sets.

Acknowledgements

J Moore provided guidance, inspiration, and a proof of the equivalence between
the serial adder and the netlist adder.

21

References

[1]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

R. S. Boyer, D. Goldschlag, M. Kaufmann, and J. S. Moore. Functional instanti-
ation in first order logic. In V. Lifschitz, editor, Artificial Intelligence and Mathe-
matical Theory of Computation: Papers in Honor of John McCarthy, pages 7-26.
Academic Press, 1991.

M. Browne, E. Clarke, and O. Grumberg. Characterizing finite Kripke structures
in propositional temporal logic. Theoretical Computer Science, 59, 1988.

R. E. Bryant, S. German, and M. N. Velev. Exploiting positive equality in a logic
of equality with uninterpreted functions. In N. Halbwachs and D. Peled, editors,
Computer-Aided Verification—CAV ’99, volume 1633 of LNCS, pages 470-482.
Springer-Verlag, 1999.

J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor
control. In Computer-Aided Verification (CAV ’94), volume 818 of LNCS, pages
68-80. Springer-Verlag, 1994.

D. Cyrluk. Microprocessor verification in PVS: A methodology and simple exam-
ple. Technical Report SRI-CSL-93-12, SRI, Dec. 1993.

D. Greve, M. Wilding, and D. Hardin. High-speed, analyzable simulators. In
M. Kaufmann, P. Manolios, and J. S. Moore, editors, Computer-Aided Reasoning:
ACL2 Case Studies, pages 113-135. Kluwer Academic Press, June 2000.

T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Assume-guarantee refinement
between different time scales. In N. Halbwachs and D. Peled, editors, Computer-
Aided Verification-CAV ’99, volume 1633 of LNCS, pages 208-221. Springer-
Verlag, 1999.

R. Hosabettu, G. Gopalakrishnan, and M. Srivas. A proof of correctness of a pro-
cessor implementing Tomasulo’s algorithm without a reorder buffer. In L. Pierre
and T. Kropf, editors, Correct Hardware Design and Verification Methods, 10th
IFIP WG10.5 Advanced Research Working Conference, (CHARME ’99), volume
1703 of LNCS, pages 8-22. Springer-Verlag, 1999.

R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Proof of correctness of a proces-
sor with reorder buffer using the completion functions approach. In N. Halbwachs
and D. Peled, editors, Computer-Aided Verification-CAV ’99, volume 1633 of
LNCS. Springer-Verlag, 1999.

M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, July 2000.

M. Kaufmann and J. S. Moore. ACL2 homepage. See URL http://www.cs.-
utexas.edu/users/moore/acl2.

M. Kaufmann and J. S. Moore. Structured theory development for a mech-
anized logic. Journal of Automated Reasoning, 2000. To appear, See
URL http://www.cs.utexas.edu/users/moore/publications/acl2-papers.-
html#Foundations.

P. Manolios. Correctness of pipelined machines. In W. A. Hunt, Jr. and S. D. John-
son, editors, Formal Methods in Computer-Aided Design—-FMCAD 2000, LNCS.
Springer-Verlag, 2000.

P. Manolios. Homepage of Panagiotis Manolios, 2000. See URL http://wuw.cs.-
utexas.edu/users/pete.

P. Manolios. Well-founded equivalence bisimulation. Technical report, Depart-
ment of Computer Sciences, University of Texas at Austin, 2000. In preparation.
P. Manolios, K. Namjoshi, and R. Sumners. Linking theorem proving and model-
checking with well-founded bisimulation. In N. Halbwachs and D. Peled, editors,

22

(17]

18]

[19]

[20]

[21]

(22]

23]

(24]

[25]

[26]

27]

Computer-Aided Verification—-CAV ’99, volume 1633 of LNCS, pages 369-379.
Springer-Verlag, 1999.

K. L. McMillan. Verification of an implementation of Tomasulo’s algorithm by
compositional model checking. In A. J. Hu and M. Y. Vardi, editors, Computer
Aided Verification (CAV ’98), volume 1427 of LNCS, pages 110-121. Springer-
Verlag, 1998.

K. S. Namjoshi. A simple characterization of stuttering bisimulation. In 17th Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
volume 1346 of LNCS, pages 284296, 1997.

A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formu-
las by small domain instantiations. In N. Halbwachs and D. Peled, editors,
Computer-Aided Verification—-CAV ’99, volume 1633 of LNCS, pages 455-469.
Springer-Verlag, 1999.

D. M. Russinoff and A. Flatau. Rl verification: A floating-point multiplier. In
M. Kaufmann, P. Manolios, and J. S. Moore, editors, Computer-Aided Reasoning:
ACL2 Case Studies, pages 201-231. Kluwer Academic Press, June 2000.

J. Sawada. Formal Verification of an Advanced Pipelined Machine. PhD thesis,
University of Texas at Austin, Dec. 1999. See URL http://www.cs.utexas.edu/-
users/sawada/dissertation/.

J. Sawada. Verification of a simple pipelined machine model. In M. Kaufmann,
P. Manolios, and J. S. Moore, editors, Computer-Aided Reasoning: ACL2 Case
Studies, pages 137-150. Kluwer Academic Press, 2000.

J. Sawada and W. A. Hunt, Jr. Trace table based approach for pipelined micro-
processor verification. In Computer Aided Verification (CAV ’97), volume 1254
of LNCS, pages 364-375. Springer-Verlag, 1997.

J. Sawada and W. A. Hunt, Jr. Processor verification with precise exceptions and
speculative execution. In A. J. Hu and M. Y. Vardi, editors, Computer Aided
Verification (CAV ’98), volume 1427 of LNCS, pages 135-146. Springer-Verlag,
1998.

M. Srivas and M. Bickford. Formal verification of a pipelined microprocessor.
IEEE Software, pages 52—-64, Sept. 1990.

M. K. Srivas and S. P. Miller. Formal verification of an avionics microprocessor.
Technical Report CSL-95-04, SRI International, 1995.

P. J. Windley and M. L. Coe. A correctness model for pipelined microproces-
sors. In Theorem Provers in Circuit Design, volume 901 of LNCS, pages 33-52.
Springer-Verlag, 1994.

