Verification of Pipeline Circuits

Matt Kaufmann
David M. Russinoff

September 1, 2000

Abstract

The use of pipelines is an important technique in contemporary hard-
ware design, particularly at the level of register-transfer logic (RTL). Ear-
lier formal analysis (e.g., [4]) using the ACL2 theorem prover showed cor-
rectness of pipelined floating-point RTL. This paper extends that work
by considering a notion of a conditional pipeline, essentially the result of
sharing hardware among several distinct pipelines. We have employed a
pipeline tool, written in ACL2 but completely unverified, to find a pipeline-
related bug in an industrial hardware design, which has since been cor-
rected. We then enhanced this tool to generate lemmas that we have
used to prove properties of the corrected design. This paper presents a
theoretical basis for this tool and describes its design and operation at an
abstract level, showing how it fits into the correctness proof. This work
may be viewed, from a high-level perspective, as encouragement for for-
mal verifiers to prove properties of the actual RTL-level models, rather
than stopping with their various abstractions.

1 Introduction

Practical algorithms for even the most elementary floating-point operations are
sufficiently complex that their hardware implementations may require at least
several cycles to execute. In order to maximize throughput, such operations may
be pipelined by partitioning them into simpler computations that can be per-
formed independently, each within a single cycle. Verifying that an algorithm
is implemented correctly by a pipeline circuit requires demonstrating the ab-
sence of any resource conflicts that might result in interference between pipeline
stages. Once this is done, the circuit may be modeled at a more abstract level
without reference to time, i.e., it may be treated as combinational, which greatly
simplifies its analysis.

In an earlier paper [4], we formalized the notion of a pipelined circuit and
described a verification methodology that involves establishing the behavioral
equivalence between a pipeline and a derived combinational circuit, which allows
theorems about the latter to be transferred to the former. The theorems are
mechanically checked with ACL2, supported by a library of lemmas pertaining



to bit vectors and floating-point arithmetic [5]. This methodology has been
applied successfully in proving the correctness of a number of floating-point
instructions of the AMD Athlon™ processor! with ACL2.

In general, however, pipelined circuits do not strictly conform to the sim-
ple definition presented in [4], which requires that a unique pipeline depth be
associated with each signal. On the contrary, it is not uncommon for a single
floating-point module to perform several operations of different latencies that
involve similar computations, and may therefore be optimized through the shar-
ing of circuitry. With respect to each operation, the module behaves as a simple
pipeline subject to certain constraints. A given signal may be of different depths
with respect to different pipelines.

An example of such a complex pipeline is a version of the AMD Athlon
processor floating-point adder that performs several addition and subtraction
operations, each of latency 4, along with a variety of floating-point comparisons
of latencies 2 and 3. The module is known as the merged adder because it is
the result of modifying an earlier version by implementing additional instruc-
tions, including the 3DNow/™ instruction set, designed by AMD to support 3-
dimensional graphics. The purpose of this paper is to extend our simple pipeline
methodology to a larger class of circuits that includes the merged adder.

The circuitry with which we are concerned (indeed the entire AMD Athlon
processor) is designed in a simple register-transfer logic (RTL) language, which
is defined in [4]. Our approach is based on an automatic translator from this
language to the logic of ACL2, also described in [4]. We begin in Sections 2 and 3
by reviewing both the RTL language and the translator, including extensions
to the latter that have been implemented for our present purpose. In Section 4
we develop a theory based on a notion of conditional pipeline and identify a
context in which several distinct conditional pipelines within a circuit may be
modeled by means of the same combinational circuit. In Section 5, we present a
scheme, based on this theory, using the merged adder as an illustration, by which
ACL2 theorems pertaining to the pipelines can be derived from corresponding
theorems about the combinational circuit. Section 6 describes a tool, written in
ACL2, that analyzes pipelines and facilitates the ACL2 proofs of these theorems.
This tool discovered a flaw in the pipeline structure of the merged adder: a
number of signals were being accessed one cycle before their values were valid.
The problem was easily corrected, before the design was committed to silicon.

2 Circuit Descriptions

Each signal s of a circuit description D in our RTL language is defined by a
statement of one of three forms,

input s[n :0]; (1)

LAMD, the AMD logo and combinations thereof, 3DNow!, and AMD Athlon are trademarks
of Advanced Micro Devices, Inc.



s[n:0] = E; (2)
or
s[n:0] <= E; 3)

and s is thereby identified as an input, a wire, or a register, respectively. The
size of s, which will be denoted as A(s), is defined to be n + 1, where n € N.
In the case of a wire or a register, F is an expression constructed from signals
of D and standard logical connectives, called the ezpression for s. Any signal
(input, wire, or register) may also appear in a declaration of the form

output s[n : 0]; 4)

and is thus identified as an output of D.

Let S(D) denote the set of signals of D, and let I(D), O(D), W(D), and
R(D) denote the subsets consisting of its inputs, outputs, wires, and registers,
respectively. Note that S(D) is the disjoint union of I(D), W (D), and R(D).

Let s,s" € S(D) and let E be the expression for s. Then s’ is a combinational
supporter of s iff s € W (D) and either s’ occurs in E or s’ is a combinational
supporter of some wire occurring in E. It is a syntactic requirement of the
language that no wire is a combinational supporter of itself. We derive a weaker
notion of support by dropping the requirement that s be a wire: s’ is a supporter
of s iff either s’ occurs in E or s’ is a supporter of some signal occurring in E.
A circuit D is acyclic if no signal of D supports itself. In this paper, we shall
consider only acyclic circuits.?

A valuation for D is a partial function v from S(D) to N such that for each
s € dom(v), v(s) is a bit vector of length A(s). If a valuation v is defined on all
signals that occur in an expression E, then v(E) is defined in the natural way,
e.g., v(x &y) = v(x) & v(y), and in this case, if E is the expression for a signal
s, then v(E) is always a bit vector of length A(s). If the domain of v is I(D) or
R(D), then v is called an input valuation or a register state, respectively. Given
an input valuation 7 and a register state R, there exists a unique valuation with
domain S(D), which we shall denote as Vp z.%, that extends both Z and R and
such that Vp 7 »(s) = Vp,z,r(E) whenever s is a wire and E is the expression
for s.

The semantics of circuit descriptions are based on an underlying notion of
clock cycle. Let Ty,T;,... be a sequence of input valuations and let Ry be a
register state for D. We think of each 7 as representing the values of the input
signals of D on the k* cycle of an execution, and R as an initial set of register
values. Register states for successive cycles are computed as

Ri+1 = nextp (Ik, Rk),

2In the actual RTL, a register is sometimes assigned conditionally, i.e., it can hold its
previous value when this value is irrelevant. Our translation replaces this irrelevant value
with 0 in order to produce a strictly acyclic circuit.



where the function nertp is defined as follows: Given an input valuation Z and
a register state R, nextp(Z, R) is the register state R', where for each s € R(D),
if E is the expression for s, then

R'(s) = Vp1.r(E).

If R(D) is empty, then D is combinational, otherwise, D is sequential. In
the combinational case, the semantics of D are considerably simpler: the value
of each signal on cycle k is determined by the input valuation Zj, and thus we
may write Vp 7 unambiguously. Naturally, it is in general easier to characterize
the behavior of combinational circuits than sequential circuits.

For any acyclic circuit D, the result of replacing each register assignment (3)
of D by the corresponding wire assignment (2) is a combinational circuit, which
we shall denote as D. In Section 4, we shall examine a class of acyclic circuits
D for which we can establish a relation between D and D that allows us to
derive properties of D from corresponding properties of D. Since we hope to
support our proofs with the ACL2 prover, we shall first describe our scheme for
modeling circuits in the ACL2 language.

3 Translation to ACL2

The RTL-ACL2 translator analyzes the input declarations and assignments of
a circuit description D, classifies each signal as an input, a wire, or a register,
and determines its size A(s). If a signal s is a wire or a register, then the
expression for s is translated into an ACL2 term whose free variables are the
signals occurring in the expression. This requires a translation of each RTL
construct into some ACL2 function. For example, the term derived from the
wire definition

M4_mantissa_ols_high[22:0] =
{M4_sum71_co[68:47],
M4_sum71_co[46] & ~("M4_sum71_co[45] &
“M4_sticky_ols_high & M4_RN_sel)};

is
(cat (bits m4_sum71_co 68 47)
(logand (bitn m4_sum71_co 46)
(compl (logand (logand (compl (bitn m4_sum71_co 45)
1)
(compl m4_sticky_ols_high
1))
m4_rn_sel)

1))
1)).



Here, logand is the LISP primitive for logical (bitwise) “and”, and cat, comp1,
bitn, and bits are defined functions that perform concatenation, bitwise com-
plementation, bit extraction, and bit slicing, respectively (see [4]).

Next, the translator generates a unary function corresponding to each signal,
the argument of which represents a cycle number. For s € I(D), the function
that represents s is undefined, constrained only to have the required length
A(s). Let I(D) = {q1,--- ,qn}- Then the following single encapsulate form is
generated:

(encapsulate ((¢1 (@) t) ... (gnv () t))
(local (defun ¢; (n) (declare (ignore n)) 0))
(defthm bvecp-¢;
(bvecp (g1 n) Ag1))
:rule-classes :rewrite ...)

(local (defun gy (n) (declare (ignore n)) 0))
(defthm bvecp-gqy

(bvecp (gv n) A(gw))

:rule-classes :rewrite ...)).

The functions corresponding to wires and registers are then defined in terms of
the input functions. For each wire s, the following definition is generated, in
which we write (f a1 ...a;) to denote the form derived from the expression for
s:

(defun s (n)
(f (@ n) ... (a;j n))).

If s is a register, then the value of s on cycle n is determined by the values of
ai,...,a; oncyclen—1. In order to avoid any assumptions about the value of s
on cycle 0, we make use of an undefined function unknown, which is constrained
to return a bit vector of a specified length. The following definition is generated:

(defun s (n)
(if (zp n)
(unknown ’s A(s))

(f (a1 (1- n)) ... (a; (1- 1n))))).

In the general case, these functions form a mutually recursive clique. In
order for the definitions to be admitted by ACL2, a well-founded measure must
be supplied explicitly. To this end, the translator computes the number x(s)
of combinational supporters of each signal s (x(s) = 0 unless s is a wire), and
inserts the following declaration in the definition for s:

(declare (xargs :measure (cons (1+ n) x(s)))).

The prover is then able to establish their admissibility automatically.
The library lemmas that we plan to apply to these functions generally depend
on the length A(s) of the bit vector (s n). Therefore, the translator has been



programmed to generate, in addition to the bvecp-g; lemmas, the following for
each wire or register s:

(defthm bvecp-s
(bvecp (s n) A(s))

:rule-classes :rewrite ...)

(An auxiliary file contains lemmas that guarantee that these lemmas are proved
automatically.)

The translator behaves differently if the user declares the circuit D to be
acyclic. In this case, once the claim of acyclicity is verified, the signal definitions
are ordered so that no signal precedes any of its supporters. Since there is no
mutual recursion, the measure declarations may be omitted. More significantly,
in addition to the primary model described above, two alternative models of the
combinational circuit D are constructed.

The first of these two is intended for execution. We define a second function
corresponding to each wire s of D (i.e., each wire or register of D). This function
belongs to a separate package, named "+"; all functions previously mentioned
belong to the "ACL2" package. Its arguments correspond to the signals that
occur in the expression for s:

(defun +::s (ay...a;)
(f al...aj)).

One other function is included in this model of D. Let W (D) = {s1,.--,8L},
ordered so that no signal precedes any of its supporters, and for ¢ = 1,..., L,
let ai1,...,as; be the arguments of +::5;. Suppose that we are interested in
observing the behavior of some set of signals {r1, ... ,r¢}. Then we may program
the translator to generate this definition:

(defun execute (var q;...qn)
(letx ((s1 (+::51 @11-..a15,))
(82 (+::82 a21...a2j2))

(sy (#::50 an1...aNjy)))
(case var
(r1 r)
(ra r2)

(’r‘g 'f‘e) .
The arguments of execute are the input signals ¢, ... ,qn and one additional
argument, var, which ranges over the signals of interest. It is clear from the def-
inition that the function simply computes the value of each signal in succession
and returns the value of the selected signal.
For the other model of D, yet another function is generated for each signal, in

a package named "*". These functions have no arguments; their values represent
the values of the corresponding signals that are determined by an unspecified



set of input values. The inputs are again introduced by an encapsulate form
that constrains their values only to be bit vectors of the appropriate lengths:

(encapsulate ((*::q; () t) ... (x::qy O t))
(local (defun *::¢; () 0))
(defthm bvecp*q;
(bvecp (*::q1) A(q1))

:rule-classes ...)

(local (defun *::gny (O 0))
(defthm bvecp*qy
(bvecp (*::qn) A(gn))
:rule-classes ...)).

The other signal values are then defined in terms of these:
(defun *::8 OO (f (*x::a1) ... (*::a5))).
As in the "ACL2" model, we also have the following for each s:

(defthm bvecp-*-s
(bvecp (*::5) A(s))
:rule-classes :rewrite ...)

Whenever the "*" or "ACL2" model is included in a proof session, these lemmas
are loaded along with the signal definitions. The definitions are then all disabled,
to be enabled individually as required.

Of the two alternative models of D, the "+" model has the advantage of being
executable while the "*" model (for reasons discussed in [4]) is more amenable
to formal analysis. It is not difficult to show, for any acyclic circuit D, that
the two are equivalent. First, we first prove the following rewrite rule for each
signal s;, 1 <¢ < L:

(equal (+::5; (k::ay) ... (*::a45))

(*x::8;)).

(These lemmas may be generated and proved automatically.) Then, with all of
the functions *: :s; and +: : s; disabled (and the function execute enabled), the
following equivalence is readily proved, for each of the signals rq,... ,7y:

(equal (*::71;) (execute ’r; (*::q1) ... (*::qn))).

Ultimately, however, we are interested in the behavior of the primary "ACL2"
model of D. The other two are useful only insofar as we are able to relate them
to the "ACL2" model. Of course, if D happens to be a combinational circuit, i.e.,
D = D, then equivalence is trivial—the following theorem may be proved, for
each signal s; of D, simply by enabling and disabling definitions as appropriate:

(implies (and (equal (g; n) (*::¢1))
(equal (g2 n) (*::¢2))



(equal (gn n) (*::qn)))
(equal (s; n) (*::s5;))).

Of course, the circuits with which we are concerned are generally not combi-
national. However, in the next section, we shall describe a class of pipeline
circuits for which we can prove lemmas similar to the above, providing a means
for “lifting” results pertaining to the "*" model to the "ACL2" model. For these
circuits, we are thus free to focus on the combinational circuit D, using the "+"
model for testing and concentrating our proof effort on the simpler "*" model.

4 Pipelines

Let 6 : S(D) - N. We shall say that D is a pipeline with depth function § if

(1) for all s € W(D), §(s") = d(s) for each signal s’ occurring in the expression
for s, and

(2) for all s € R(D), §(s) > 0 and §(s") = d(s) — 1 for each signal s’ occurring
in the expression for s.

Obviously, any combinational circuit is a pipeline with constant depth func-
tion §(s) = 0. For a nontrivial example of a sequential pipeline, the reader is
referred to the floating-point multiplier presented in [4].

It is clear that any pipeline is acyclic. It is also easy to show that a pipeline
D is related to the derived combinational circuit D as stated in the following
theorem.

Theorem 1 Let D be a pipeline with depth function 6. Let {Zo,Zy,...} be
a sequence of input valuations and let Ro be a register state for D. For all
k € N, let Rpr1 = nextp(Zy,Ri). Let T be the input valuation defined by
I(s) = Zs(s)(s) for each input s. Then for any signal s of D,

VD,Is(.g),Ra(s) (s) = Vﬁ,l(s)-

In fact, we shall prove a generalization of Theorem 1, concerning a larger class
of circuits that behave as pipelines under certain constraints.

A constraint set for D is defined to be a set of triples A C S x Nx N such that
if (s,¢,d),(s',c,d'") € Aand s = ¢, then ¢ = ¢'. The domain of a constraint set

A is
dom(A) = {s € S(D) : (s,c,d) € A for some ¢ and d}.

We shall say that an expression E is forced to the value u at depth d under A
if v(E) = u for every valuation v that satisfies v(s) = ¢ for all (s,¢,d) € A.
Note that a given expression cannot be forced to different values at different
depths. Given a set P of signals, F is determined by P at depth d under A if
v(E) = ' (E) for any two valuations v and v’ such that



(a) v(s) =v'(s) for all s € P, and
(b) v(s) = v'(s) = ¢ for all (s,¢,d) € A.

A sequence of input valuations {Zy,Z1,7Zs, ...} satisfies a constraint set A
if for any register state Ry, and for all (s,c,d) € A, Vp 1, r,(s) = ¢, where
Ry = nemtD(Ik,’R,k) for k € N.

The closure A of A is recursively defined as follows: (s,c,d) € A iff

(a) (s,c,d) € A, or
(b) s € W and the expression for s is forced to ¢ at depth d under A, or

(c) s € R,d > 0, and the expression for s is forced to ¢ at depth d—1 under .A.

It is clear that any sequence of input valuations that satisfies A must also
satisfy A.

We are ready to consider a generalized notion of pipeline, which involves se-
lecting a relevant subset P of the signals of D according to a set 4 of constraints.
Let A be a constraint set for D, let P C S(D) such that P N dom(A) =, and
let 6 : P — N. Then D is a conditional pipeline under A with pipeline signals
P and depth function ¢ if for all d € N,

(a) for every s € W(D)NP, if §(s) = d, then the expression for s is determined
by PN é~1(d) at depth d under A; and

(b) for every s € R(D)N P, if §(s) = d, then d > 0 and the expression for s is
determined by PN é~1(d — 1) at depth d — 1 under A.

The circuit that originally motivated this definition is the merged adder
mentioned in Section 1. The operations performed by this circuit include those
of the original AMD Athlon processor floating-point adder, to which we shall
refer as FPA, as well as the 3DNow! instruction extensions, which we shall call
F3A. Each of these sets contains operations of latencies 2, 3, and 4. Thus, the
full set of operations is partitioned into six subsets. For each of these subsets,
the circuit may be viewed as a conditional pipeline with corresponding pipeline
signals and constraints.

Correct behavior of the merged adder requires that two operations are never
initiated on the same cycle, and that two operations of different latencies are
never scheduled to terminate on the same cycle. An FPA or F3A operation is ini-
tiated by setting the control input EPC_FPA_ENO_11 or EPC_F3A_ENO_11, respec-
tively, and encoding the operation in the opcode input, EPC_EX1_FPOpcode0_11.
Operands are represented by the signals PIPEO_FSRC1_11 and PIPEO_FSRC2_11.
There is an additional control input, EPC_FPA_WB0_14, which simply echoes
EPC_FPA_ENO_11 after a 3-cycle delay.

Thus, for example, in order for a long (4-cycle) F3A operation to be initiated
at cycle n and to execute correctly, the following predicate must hold:



(defun f3a-long-op-assumptions (n)
(and
;1 1s a positive integer:

(not (zp n))
;;£3a 4-cycle op is initiated at n:

(equal (epc_f3a_en0_11 n) 1)

(f3a-long-op (epc_exl_fpopcodeO_11 n))
(admissible-operand-p (pipeO_fsrci_11 n))
(admissible-operand-p (pipeO_fsrc2_11 n))

;;no fpa op is initiated at n:

(equal (epc_fpa_en0O_11 n) 0)
(equal (epc_fpa_wb0_14 (+ 3 n)) 0)

;;n0 3-cycle op is initiated at n+1:

(or (equal (epc_f3a_en0_11 (+ 1 n)) 0)

(not (f3a-mid-op (epc_exl_fpopcodeO_11 (+ 1 n)))))
(or (equal (epc_fpa_en0_11 (+ 1 n)) 0)

(not (fpa-mid-op (epc_exl_fpopcodeO_11 (+ 1 n)))))

;;no 2-cycle op is initiated at n+2:

(or (equal (epc_f3a_en0_11 (+ 2 n)) 0)

(not (f3a-short-op (epc_exl_fpopcode0_11 (+ 2 n)))))
(or (equal (epc_fpa_en0_11 (+ 2 n)) 0)

(not (fpa-short-op (epc_exl_fpopcodeO_11 (+ 2 n))))))).

This definition states not only that the operation is initiated correctly, but also
that no other operation interferes with its execution. This latter point is made
rigorous by showing that the circuit may be described as a conditional pipeline;
we do so by expressing the appropriate constraints.

The condition that no FPA operation is initiated at cycle n is obviously
ensured by two constraints:

(EPC_FPA_EN0_11,0,0)
(EPC_FPA_WB0_14,0,3).

The other constraints are less obvious, but for each relevant class of opera-
tions, there happens to be a signal that is set whenever an operation from
that class is initiated. For example, there are three 2-cycle F3A operations
that return the minimum of two operands. Their opcodes are represented by

10



the constants F3MIN, F3MINPS, and F3MINSS, and thus they correspond to the
signal F3A_min_11:

F3A_min_11 = EPC_F3A_ENO_11 &

(EPC_EX1_FPOpcode0_11[11:0] == ‘F3MIN |
EPC_EX1_FPOpcode0_11[11:0] == ‘FPKMINPS |
EPC_EX1_FPOpcode0_11[11:0] == ‘FPKMINSS).

Clearly, the condition that none of these operations is initiated at either cycle
n or cycle n + 2 is represented by these two constraints:

(F3A_min_11,0,0)
(F3A_min_11,0,2).

Altogether, 37 constraints are required in the formulation of this conditional
pipeline.

The pipeline signals naturally include the operands and opcode, which are
assigned depth 0. There are five other pipeline inputs—four exception masks
and one that controls rounding—which are received one cycle later and therefore
have depth 1. There are seven outputs of interest—the result of the operation
and six exception flags—all of which have depth 4. Thus, correctness of the
pipeline is described by the following implication, in which the conclusion ex-
presses some relation among the pipeline inputs and outputs:

(defthm correctness-of-f3a-long-ops
(implies (f3a-long-op-assumptions n)

(f3a-long-op-result (pipeO_fsrcl_11 n)
(pipeO_fsrc2_11 n)
(epc_ex1_fpopcode0_11 n)
(rq_speccwrc_13 (+ 1 n))
(rq_speccwom_13 (+ 1 n))
(rq_speccwum_13 (+ 1 n))
(rq_speccwdm_13 (+ 1 n))
(rq_speccwim_13 (+ 1 n))
(pipeO_fres_fpa_15 (+ 4 n))
(ex_faultnormalizeO_fpa (+ 4 n))
(ex_invalidxcpO (+ 4 n))
(ex_denormxcp0 (+ 4 n))
(ex_inexactresultO (+ 4 n))
(ex_numoverflow0 (+ 4 n))
(ex_tinyresult0 (+ 4 n))))).

Of course, the other pipelines of the circuit have different constraint sets and
depth functions, although pipeline signals are shared. For the 3-cycle (resp., 2-
cycle) operations, the operands and opcode are pipeline signals of depth 1 (resp.,
depth 2) while the outputs still have depth 4.

A natural approach to proving theorems about conditional pipelines, such as
the one above, would be to derive an actual pipeline D' from a given conditional

11



pipeline D such that the signals of D’ coincide with the pipeline signals of D,
and such that the behaviors of these signals can be shown to be equivalent
for input sequences that satisfy the constraints of D. This would allow us to
derive properties of D by examining the combinational circuit D' and applying
Theorem 1. This approach, however, is not quite suitable for our needs.

The real purpose of a conditional pipeline, as illustrated by the merged adder,
is to perform several operations that have different latencies but involve similar
computations that may be executed on the same hardware. Thus, a single
circuit is designed as an embodiment of several distinct conditional pipelines that
perform different functions, each with its own sets of constraints and pipeline
signals. Just as circuitry is shared by these pipelines, we would like to be able
to prove theorems about this circuitry that could be shared in our analysis of
the various pipeline behaviors. Thus, rather than construct and prove separate
theorems about a different combinational circuit for each of several conditional
pipelines that are comprised by a circuit D, we would prefer to focus our proof
efforts on the single combinational circuit D. This requires that we find a way
to lift results pertaining to D to results about D, which motivates the following
theorem.

Theorem 2 Let D be a conditional pipeline under A with pipeline signals P
and depth function §. Let {Zy,Z;,...} be a sequence of input valuations that
satisfies A, and let T be an input valuation such that

(a) for all s € I(D)N P, I(s) = Ls(5)(s), and
(b) for all (s,c,d) € A, Vj 7(s) =c.

Let Ry be a register state, and let Ry+1 = nextp(Zy, Ry) for k € N. Then for
all s € P, VD,IMS),RM)(S) = Vﬁ,I(s)-

Proof: First, we claim that for all (s, c,d) € A, Vp 7(s) = c. More generally:

if expression E is forced to the value c at depth d under A, then V5 ,(s) = c.
But this is easy to show by induction on the appropriate lexicographic order,
considering first d and then the sum of the numbers of supporters of signals
occurring in E, by using hypothesis (b) and the definition of A.

The conclusion of the theorem is derived using a similar induction scheme,
based on d and then the number of supporters of s. In the base case, s € I(D)
and using hypothesis (a), we have

VD,IJ(S),RJ(S) (3) = I&(s) (S) = I(S) = Vf),z(s)'
For the inductive case, let E be the expression for s and let

d—{ 8(s) it s € W(D)
] 4(s)—1 ifse R(D).

By the inductive hypothesis, for all s’ € P occurring in E with 6(s') = d,

Vp,1,R4(5") = Vp £(8).

12



Now suppose that (s, ¢,d) € A. Since {Zo,T1, ...} satisfies A, Vp 7, =, (s') = c.
As we have already noted, Vﬁ’I(S’ ) = ¢ as well. Thus, since E is determined by
PN & 1(d) under A at depth d, and since we have just shown that valuations
Vp,1,,R, and Vj 7 satisfy the criteria for v and ¢’ in the definition of determined,

VD,IJ(S),RJ(S) (S) =VD,7,,Ra (E) = Vﬁ,Z(E) = V’[),I(s)'l:‘

5 Correctness of Pipelines

Theorem 2 above is the theoretical basis for our scheme for deriving ACL2
theorems pertaining to a conditional pipeline D from corresponding theorems
about D, which we describe in this section.

Suppose that D is a conditional pipeline under a constraint set A with
pipeline signals P and depth function §, where

A={(s1,c1,d1),...,(s4,ca,da)}.
Again let

I(D) = {qla"' an}a

and assume that

ID)NP={q,-..,q},

and that the set of all signals in I(D) that belong to dom(A) is

{qk-l—l;--- 7QM}7
where 1 < k <m < N. Also, let

OMD)NP ={ry,...,re}.

As a matter of convenience, assume that & has been extended to the inputs

Qk+1,--- ,Gm by defining d(g;) in each case to be a depth at which ¢; is con-

strained by A, i.e., d(¢;) = dj, where (sj,c;,d;) € A and s; = g;. Note that

there may be several possible choices of j, but the selection is of no consequence.
We are interested in deriving properties of D of the form

(implies (assumptions n)
(result (g1 (+ 6(q1) n)) ... (g (+ &(gr) n))
(ry (+ 0(r1) n)) ... (rg (+ 8(rg) D))

such as the theorem correctness-of-f3a-long-ops of the preceding section.
In general, (assumptions n) is a predicate constructed from applications of the
input functions of the form (¢g; (+ j n)), where 1 <i<m and j > 0.

Note that the input functions ¢, ... , gy represent a sequence of input val-
uations {Zy,Zy,...} for D, given by

Zi(g;) = (g; (+ i m)).

13



Similarly, the corresponding constant functions in the "*" package represent an
input valuation Z for D, defined by

I(g;) = (x::q5).

In order to establish the relevance of Theorem 2 in this context, we must be
able to ensure that the sequence {Zy,7Z;,. .. } satisfies A. Thus, we assume that
we have proved the following lemma with the ACL2 prover:

(defthm constraint-lemma-1
(implies (assumptions n)
(and (equal (s; (+ d; n)) c1)
(equal (sy (+ dy mn)) c¢2)

(equal (s4 (+ da m)) ca)))).

We further must be able to ensure that the valuation Z satisfies the conditions (a)
and (b) of the theorem. To this end, we introduce the following macro.

(defmacro bindings (n)
‘(and (equal (*::¢1) (q1 (+ 0(q1) ,m)))
(equal (*::¢2) (g2 (+ d(g2) ,m)))

(equal (*::¢m) (gm (+ 0(gm) >m))))).
Now assume that we are also able to prove the following.

(defthm constraint-lemma-2
(implies (and (assumptions n) (bindings n))
(and (equal (*::s1) c1)
(equal (*::52) c2)

(equal (*::s54) ca)))).

Then all of the hypotheses of Theorem 2 must hold, given (assumptions n)
and (bindings n). It follows that we should be able to prove this lemma:

(defthm pipeline-lemma
(implies (and (assumptions n) (bindings n))
(and (equal (r; (+ 6(r1) n)) (*::19))
(equal (ry (+ 0(r2) n)) (*::19))

iéf‘lual (re (+ 6(re) n)) (*::7))))).

Before considering the proof of this lemma or its implications, let us examine
constraint-lemma-1 and constraint-lemma-2 in the context of the merged
adder. Asillustrated by this example, if the constraint set .4 has been judiciously
constructed, then the proofs of both of these lemmas should be trivial. For
example, the conjunct of constraint-lemma-1 corresponding to the constraint
(F3A_min_11,0,2) is

14



(equal (f3a_min_11 (+ 2 n)) 0),
where

(defun f3a_min_11 (n)
(logand (epc_f3a_en0_11 n)
(logior (log= (epc_ex1l_fpopcode0_11 n) 1492)
(logior (log= (epc_exl_fpopcode0_11 n) 2050)
(log= (epc_ex1_fpopcodeO_11 n) 2114)))))

is the definition generated for this signal. On the other hand, the definition of
assumptions includes the conjunct

(or (equal (epc_f3a_en0_11 (+ 2 n)) 0)
(not (f3a-short-op (epc_exl_fpopcodeO_11 (+ 2 n))))),

where £3a-short-op is defined by

(defun f3a-short-op (op)
(member op ’(... 1492 2050 2114 ...))).

Thus, when the definitions are expanded, the term (equal (f3amin 11 (+ 2
n)) 0) is immediately rewritten to T under the hypothesis (assumptions n).
Similarly, the corresponding conjunct of constraint-lemma-2 is

(equal (*::f3a_min_11) 0).
The macro bindings in this case is given by

(defmacro bindings (n)
‘(and (equal (x::pipeO_fsrcil_11)
(pipeO_fsrci_11 ,n))
(equal (*::pipe0O_fsrc2_11)
(pipeO_fsrc2_11 ,n))
(equal (*::epc_ex1_fpopcode0_11)
(epc_ex1_fpopcodeO_11 ,n))
(equal (*::rq_speccwrc_13)
(rq_speccwrc_13 (+ 1 ,n)))

(equal (*::epc_fpa_en0O_11)
(epc_fpa_en0_11 ,n))

(equal (*::epc_fpa_wb0_14)
(epc_fpa_wb0_14 (+ 3 ,n))))).

Note that this macro binds the pipeline inputs (at depths 0 and 1) as well as the
constrained inputs (at depths 0 and 3). In this case, assumptions is taken to be
the predicate £3a-long-op-assumptions defined earlier. Thus, the hypothesis
(and (assumptions n) (bindings n)) implies

(f3a-long-op (*::epc_exl_fpopcode0_11)),

15



which in turn can be shown to imply
(equal (*::f3a_min_11) 0).

As noted above, once we have established both constraint-lemma-1 and
constraint-lemma-2, Theorem 2 guarantees the truth of pipeline-lemma.
However, we would like to derive pipeline-lemma formally as a theorem of
ACL2. Suppose for the moment that this has been accomplished. It remains
for us to show how pipeline-lemma can be used to derive our stated goal from
some analogous theorem pertaining to the "*" functions.

Suppose that for some predicate spec we are able to prove the following two
lemmas:

(defthm spec-lemma-1
(implies (assumptions n)

(spec (¢1 (+ 0(q1) n)) ... (gm (+ d(gm) m))

(defthm spec-lemma-2
(implies (spec (*::q1) ... (*::gp))
(result (x::qq) ... (k::igp) (x:i:rg) ... (kizirg)))).

In our example, spec-lemma-1 and spec-lemma-2 were proved for the following
predicate:

(defun spec (pipeO_fsrcil_11 ... epc_fpa_wb0_14)
(and (equal epc_f3a_en0_11 1)
(f3a-long-op epc_exl_fpopcode0_11)
(admissible-operand-p pipeO_fsrci_11)
(admissible-operand-p pipeO_fsrc2_11)
(equal epc_fpa_en0_11 0)
(equal epc_fpa_wb0_14 0))).

The next lemma can then be proved automatically by applying the rewrite
rules pipeline-lemma and spec-lemma-2:

(defthm lemma-to-be-instantiated
(implies (and (assumptions n)
(bindings n)
(spec (*::q1) ... (*::gm)))
(result (*::q1) ... (*::qp)
(ry (+0(r1) n)) ... (re (+ 6(rg) m))))).

The desired theorem may now be derived by functional instantiation:

(defthm correctness-of-pipeline
(implies (assumptions n)
(result (q; (+ 0(q1) n)) ... (gx (+ 6(gx) n))
(ry (+6(r1) n)) ... (rg (+ 6(qr) D)D)

:hints

16



(("Goal" :use ((:functional-instance lemma-to-be-instantiated
(*::¢q1 (lambda () (g1 (+ 0(q1) n))))
(*::¢2 (lambda () (g2 (+ d(g2) n))))

(k::qy (lambda OO (gm (+ 6(gm) D)) )II)))).

In order to use the indicated functional instance of lemma-to-be-instantiated,
the prover is obligated to establish the corresponding instances of the constraints
on the *::¢q;, namely the lemmas bvecpxg;, for i = 1,... ;m. This amounts to
proving the subgoals

(bvecp (g; (+ d(g;) n))).

But these are simply instances of the corresponding rewrite rules bvecp-g;.
Thus, we have the functional instance

(implies (and (assumptions n)
(and (equal (q; (+ d(q1) ,n)) (g1 (+ 6(q1) ,m)))
(equal (g2 (+ 0(g2) ,n)) (g2 (+ 6(g2) ,n)))

(equal (g, (+ 6(Qm) »n)) (g (+ 6(qm) »0)))))
(spec (g1 (+ 0(q1) n)) ... (gm (+ (gm) D)D)
(result (g1 (+ 6(q1) n)) ... (gr (+ 0(gx) n))
(ry (+0(r1) n)) ... (g (+ 8(ge) 0D,

which is automatically rewritten to the desired term by applying spec-lemma-1.
Note that it is critical that bindings was defined as a macro rather than a func-
tion, in order for the functional instance of (bindings n) to be a conjunction
of trivial equalities as included above.

We are left with the task of proving pipeline-lemma, which is precisely the
function of our pipeline tool, as described in the next section.

6 The Pipeline Tool

Retaining the notation of Section 5, suppose we have a predicate assumptions
pertaining to the signals of D for which we can prove both constraint-lemma-1
and constraint-lemma-2. Assume that we are also able to prove the following;:

(defthm n-positive-lemma
(implies (assumptions n)
(not (zp n))))

The goal of our pipeline tool is to generate a file of events culminating in
pipeline-lemma, which may then be used to establish the correctness of D
by the procedure described in Section 5.

The tool is based on a simple recursive rewriting procedure. This procedure
requires the computation of the size A(t) of a term ¢ that is generated by the
translator, as a generalization of the size of a signal. For example,

17



Abitszij) =i—j+1,

A(compl z n) =n,

and if A\(z) = A(y) = k, then

A(logior z y) = A(logand z y) = k.

Now, a term is rewritten in the context of a constraint set C, relative to
a given depth d € N, as follows. (If no case below applies, then the term is
returned unchanged.)

(1)

(6)

If the term is a signal s and there exists (s,c,d) € C, then the constant ¢
is returned.

Otherwise, assume that the term is a function call. Each of its arguments
is first rewritten recursively. Then the following rules are applied.

If all of its arguments are constants, then the term is evaluated and the
result is returned.

Suppose the term is (logior z y). If either = or y is 0, then the other
argument is returned; if 2 is the constant 2A(¥) — 1, then that constant is
returned; if y is the constant 2*(*) — 1, then that constant is returned.

Suppose the term is (logand x y). If either x or y is 0, then 0 is returned;
if z is the constant 2)¥) —1, then y is returned; if y is the constant 22(®) —1,
then z is returned.

Suppose the term is (if z y 2z). If x = T, then y is returned; if z = NIL,
then z is returned; if y = 2, then y is returned.

The input required from the user consists of four components:

(1)

(2)
3)
(4)

the ordered set of signal definitions produced by the translator, with an
indication of whether each signal is an input, a wire, or a register,

the size A(s) of each signal s,
the basic constraint set A, and

the depth 0(r;) of each of the pipeline signals of interest, 71, ... ,r¢. (These
are generally some of the outputs of D.)

Three passes through the signal list are required. On the first pass, two sets
are constructed. The first is a set C of constraints, generated by A. We do not
guarantee that C = A, but in general, A C C C A, and C is a sufficiently close
approximation to A for our purpose. The other is a set T of triples (s, Q,d),
such that

(a)

s is a signal that does not occur in C,

18



(b) d €N, and

(¢) Q is a set of supporters of s such that the expression for s is determined
by @ at depth d under C (and hence under A).

These two sets are constructed concurrently as all signals are examined in order
beginning with inputs. C is initialized to .4 and 7 is initially empty. For each
signal s, the following procedure is executed:

For each d' € N for which there exists at least one constraint (s',¢,d’) € C
such that s’ occurs in the term that the translator produced for s, that term is
rewritten in the context of the current value of C relative to the depth d'. Thus,
we may have several rewritten terms for s corresponding to different values of
d'. For each of these, a single element will be inserted into either C or 7.

Let ¢ be the rewritten term corresponding to d’ and let

gl if s € W(D)
T\ d+1 ifseR(D).

First suppose that ¢ is a constant. In this case, if there already exists some
(s,c,d") € C, with ¢ # t, then an error is signaled. Otherwise, (s,t,d) is added
to C. On the other hand, if ¢ is not a constant and @ is the set of signals that
occur in ¢, then (s,@,d) is added to T.

On the second pass, a set of pairs P C S(D) x N is constructed, representing
the pipeline signals P and depth function §. Initially, we set

P ={(r1,6(r)),.. , (re,8(re))}.

The signals are then examined in reverse order, beginning with outputs and
proceeding toward inputs, and processed as follows:

(1) If s does not occur in P, then no action is taken.

(2) Assume (s,d) € P. If s occurs in C, then an error is signaled. (Recall
that our definition does not allow a pipeline signal to be constrained.) If
there exists (s,@,d) € T, then consider the set of signals @; if not, then
consider the set of all signals that occur in the definition of s. If any signal
in this set occurs in C, then an error is signaled. Otherwise, for each signal
s’ in the set, the pair (s',d") is added to P, where

g_ld if s € W(D)
d—1 if s e R(D).

In the event of successful termination of this procedure, the claim that our
circuit D is a conditional pipeline under A has been established and P and §
have been derived.

Finally, on the third pass, an ACL2 event file is generated, loosely based on
the proof of Theorem 2. The first event in the file is the definition of the macro

19



bindings. This involves nothing more than printing a line corresponding to
each input signal ¢; that occurs either in A or in P, as follows:

(equal (*::¢;) (¢; (+ 6(gi) ,n))).

(Recall that for ¢; € dom(A), §(¢;) is selected arbitrarily from the depths at
which ¢; is constrained.)
This is followed by a second definition, which is immediately disabled:

(defun assumptions-and-bindings (n)
(and (assumptions n)
(bindings n)))

(in-theory (disable assumptions-and-bindings))

The purpose of this definition is to allow us to prevent the needless expansion
of (bindings n) when it appears in the hypothesis of a lemma.

The rest of the file consists of lemmas that are constructed from the sets C
and P as the signal list is traversed in order, starting with inputs. Whenever
a signal s € dom(C) is encountered, two or more lemmas are generated, the
precise forms of which depend on whether s is an input or not. Suppose s is an
input. Then for each (s, ¢, d) € C, we have the event

(defthm s-d-simp
(implies (assumptions n)
(equal (s (+ d n)) ¢))
thints (("Goal" :in-theory (enable assumptions)))).

These are followed by

(defthm s—*-simp
(implies (assumptions-and-bindings n)
(equal (*::5) ¢))
:hints
(("Goal" :in-theory (enable assumptions-and-bindings)))).

If s is any signal other than an input, then a similar set of events is generated,
differing only in the enable hints:

(defthm s-d-simp
(implies (assumptions n)
(equal (s (+ d n)) ¢))
:hints (("Goal" :in-theory (enable s))))

followed by

(defthm s—*-simp
(implies (assumptions-and-bindings n)
(equal (*::s) ¢))
thints (("Goal" :in-theory (enable *::5)))).

20



Whenever a signal s € P is encountered, a single lemma is generated:

(defthm s-pipe
(implies (assumptions-and-bindings n)
(equal (*::8) (s (+ 46(s) n))))
:hints (("Goal" :in-theory (enable s *::5)))).

In general, this event file may be certified with minimal guidance from the
user. It is necessary, however, that the ACL2 environment be initialized by
loading both the "ACL2" and "*" models of D along with the floating-point
library. The function (assumptions n) must then be appropriately defined
and disabled.

Once this is done, the only events in the file that may require modification
are the lemmas s-d-simp and s-*-simp that correspond to constraints belonging
to the original constraint set 4. For example, in order to prove the lemma

(defthm f3a_min_11-simp
(implies (f3a-long-assumptions n)
(equal (£f3a_min_11 (+ 2 n)) 0))
thints (("Goal" :in-theory (enable f3a_min_11))))

the prover must be able to show, according to the definition of £3a_min_11,
that

(£f3a-long-assumptions n)
and
(not (equal (epc_f3a_en0_11 (+ 2 n))) 0)

together imply that (epc_exl_fpopcode0_11 (+ 2 n)) is not 1492, 2050, or
2114. But this may be accomplished simply by extending the hint to enable the
definitions of f3a-long-assumptions and f3a-short-op.

All other lemmas in the file, including the s-d-simp and s-*-simp lemmas
that correspond to the constraints in the set-theoretic difference C — A, as well
as the s-pipe lemmas corresponding to the pipeline signals, can be proved
automatically with no user guidance. The reason for this is that in processing
the statements of these lemmas, once the enabled definitions of s and *::s are
expanded, the resulting terms are rewritten by ACL2 by following essentially
the same procedure as that used by the pipeline tool.

For example, suppose that the file contains a lemma,

(defthm s-d-simp
(implies (assumptions n)
(equal (s (+ d n)) ©))
:hints (("Goal" :in-theory (enable s)))).

based on a constraint (s,d,c) € C — A. Let (£ ay...a;) denote the term
generated by the translator for s. The pipeline tool must have rewritten this

21



term to ¢ at depth d’, where

g_ld if s € W(D)
d—1 if s € R(D).

But then the ACL2 rewriter, after expanding (s (+ d n)) to
(f (a; (+d n)) ... (a (+ d' n)))

(using n-positive-lemma in the case of a register), will likewise rewrite this
term to ¢ under the hypothesis (assumptions n). In order to see this, we refer
to the steps of the pipeline tool’s rewriting procedure (page 18):

(1) If the tool rewrites some a; to a constant ¢’ at depth d', then (a;,c',d') € C,
and there must already be a lemma a;-d'-simp, which ACL2 will invoke
to rewrite (a; (+ d' n)) toc'.

(2) In rewriting a function call, ACL2 first rewrites the arguments recursively.

(3) ACL2 rewrites a function call with constant arguments simply by evalu-
ating it.

(4) The floating-point library includes appropriate rewrite rules for reducing
(logior z y), (a) when either argument is 0, and (b) when one argument
is 2F — 1 and the other is a bit vector of length k.

(5) The library includes similar rules pertaining to (logand z y).

(6) The ACL2 rewriter has built-in procedures for reducing (if z y 2) when
=T, 2 =NIL, or y = 2.

Similarly, it is clear that the accompanying lemma s-*-simp is proved by ex-
panding (*::s) to (f (*::a;) ... (*::a;)) and rewriting that term to c.
Finally, suppose the file contains an event

(defthm s-pipe
(implies (assumptions-and-bindings n)
(equal (*::5) (s (+ &(s) n))))
thints (("Goal" :in-theory (enable s *::5))))

corresponding to some (s,d) € P. Let (f aq...ax) denote the term generated
by the translator for s. We may assume that the pipeline tool rewrote this term,
at depth

J = 4(s) it s € W(D)
N { §(s)—1 if se R(D),

to (g ai...a;), where j <k and a1,... ,a; are pipeline signals. Then the two
sides of the equation in s-pipe are expanded to

(f (k::aq) ... (k::ap))

22



and
(f (@@ (+d n) ... (a (+ d n))),
respectively, which are in turn rewritten to
(g (x::a1) ... (*::a4))
and
(g (ar (+d n)) ... (g (+d n))).

The proof is completed by applying the lemmas a;-pipe, rewriting (*::a;) to
(a; (+ d n)),fori=1,...,5.

7 Conclusion

This work grew out of an effort to verify the behavior of a floating-point RTL
module, namely the AMD Athlon processor merged adder, using ACL2. Our
initial approach was to verify a combinational version of this module, derived
by replacing register assignments with wire assignments. While it might have
been reasonable to stop there, we were concerned about the possibility of in-
terference between coexisting pipelines that may have been abstracted away by
the reduction to a purely combinational design.

This concern led to the development of a theory of pipeline circuits, which
we applied in our analysis of the adder in order to justify the abstraction. We
wrote a prototype tool to perform checks for correct pipeline behavior under var-
ious sets of assumptions on the inputs corresponding to the distinct operations
performed by a module. The tool proved its utility by exposing a bug in the
adder, which was subsequently fixed. This experience reinforced the importance
of preserving our goal of verifying the actual RTL, rather than a combinational
abstraction of it. Thus, we extended the pipeline tool to generate a sequence of
ACL2 events that provide support for a complete ACL2 proof of correctness of
the original RTL.

This effort illustrates an important verification technique: the use of un-
verified code to generate provable lemmas. (Macros, of course, have been used
through ACL2’s history for such purposes, but here we are referring to the au-
tomatic generation of substantial certifiable books.) The automation of such
lemmas proved valuable here, in support of reasoning about bit vectors (the
lemmas bvecp-s, etc., of Section 3) and in a critical step in deriving the final
correctness theorem (the lemma pipeline-lemma of Section 6). This illustra-
tion of the use of lemma generation, along with functional instantiation and
other techniques, will, we hope, encourage other formal verification workers to
reason about actual RTL hardware models, rather than limiting their efforts to
higher-level abstractions.

23



References

[1]

[2]

Moore, J, Lynch, T., and Kaufmann, M., “A Mechanically Checked Proof
of the Correctness of the Kernel of the AM D586 Floating Point Division
Algorithm”, IEEE Transactions on Computers, 47:9, September, 1998.

Russinoff, D., “A Mechanically Checked Proof of IEEE Compli-
ance of the AMD-K5 Floating Point Square Root Microcode”, For-
mal Methods in System Design 14:1, January 1999. See URL
http://www.onr.com/user/russ/david/fsqrt.html.

Russinoff, D., “A Mechanically Checked Proof of IEEE Compli-
ance of the AMD-K7 Floating Point Multiplication, Division, and
Square Root Algorithms”, Journal of Computation and Math-
ematics 1, London Math. Society, December 1998. See URL
http://wuw.onr.com/user/russ/david/k7-div-sqrt.html.

Russinoff, D. and Flatau, A., “RTL Verification: A Floating-Point Multi-
plier”, in Kaufmann, M., Manolios, P., and Moore, J, eds., Computer-Aided
Reasoning: ACL2 Case Studies, Kluwer Academic Press, 2000. See URL
http://www.onr.com/user/russ/david/acl2.html.

Russinoff, D., “An ACL2 Library of Floating-Point Arithmetic”, 1999. See
URL http://www.cs.utexas.edu/users/moore/publications/others/-
fp-README.html.

24



