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Informal Statement

Theorem Let mq,... ,m; € N be pairwise relatively
prime moduli and let ay1,... ,ar € N. There exists x € N
such that

r = a1 (mod my)

as (mod my)

r = a (mod my).
If &' satisfies the same congruences, then

' =z (mod mimsy---my).



ACL2 Formalization

(defun g-c-d (x y)
(declare (xargs :measure (nfix (+ x y))))
(if (zp x)
y
(if (zp y)
X
(if (k= xy)
(g-c-d x (- y x))
(g-c-d (- xy) y)))))

(defun rel-prime (x y)
(= (g-c-d x y) 1))

(defun congruent (x y m)
(= (rem x m) (rem y m)))

(defun congruent-all (x a m)
(if (endp m)
t
(and (congruent x (car a) (car m))
(congruent-all x (cdr a) (cdr m)))))

(defthm chinese-remainder-theorem
(implies (and (natp-all a)
(rel-prime-moduli m)
(= (len a) (len m)))
(and (natp (crt-witness a m))
(congruent-all (crt-witness a m) a m))))



Informal Proof

Lemma 1 If z,y € N are relatively prime, then there
exists s € 7 such that sy =1 (mod z).

Lemma 2 Ifz,y,z € N and z is relatively prime to both
y and z, then x s relatively prime to yz.

Proof of CRT: Let M = mymso---my. Fort=1,... ,k, let
M; = M/m; and find s; such that s;M; = 1 (mod m;). Let
r = a181M1 + &QSQMQ + -t CLkSkMk.

Then

r = CLZ'SiMi = Q; (mod mz)
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Example

Suppose we have 10000 < N < 50000 and

N = 6 (mod 25)
N = 13 (mod 36)
N = 28 (mod 49)

Then we may solve for N as follows:

M = 25-36-49 = 44100
M, = 36-49 = 1764
M, = 25-49 = 1225
M; = 25-36 =900

1764s; = 1 (mod 25) < 1451 =1 (mod 25) < 51 =9 (mod 25)
122559 =1 (mod 36) < sy =1 (mod 36)
900s3 = 1 (mod 49) < 18s3 =1 (mod 49) < s3 = 30 (mod 49)

a1:6,a2:13,a3:28

r = a1Mis; + aaMysy + azM3s3

= 6-1764-9+13-1225-1+28-900- 30
867281
29281 (mod 44100)

N = 29281



Proof of Lemma 1

Lemma 1 If z,y € N are relatively prime, then there
exists s € 7 such that sy =1 (mod z).

This is a special case of the following:

For all z,y € N, there exist r,s € 7Z such that
re—+ sy = ged(z,y).

The proof is by induction on x + y:
(1) Ifz =0, then r =0 and s = 1.
(2) If y =0, then r =1 and s = 0.
(3) If 0 < z <y, then find v’ and s’ such that
r'e +§'(y — z) = ged(z,y — x) = ged(z, y)
and let r = 7' — s’ and s = §’. Then
re+sy= (" —s)e+sy=rz+5(y—x)=ged(z,y).
(4) If 0 < y < z, then find 7’ and s’ such that
r(z —y) + 'y = ged(z — y,y) = ged(z,y)

and let r =7 and s = s’ — /.



Formal Proof

(mutual-recursion
(defun r (x y)
(declare (xargs :measure (nfix (+ x y))))
(if (zp x)
0
(if (zp y)
1
(if (k= x y)
(- (@rx(-y=x)) (sx (-yx)))
r -xy) y))N)N

(defun s (x y)
(declare (xargs :measure (nfix (+ x y))))
(if (zp x)
1
(if (zp y)
0
(if (k= xy)
(s x (- yx))
G GCxyy x9N
)

(defthm r-s-lemma
(implies (and (natp x)
(natp y))
(= (+ (x (r xy) %)
(x (s xy)y))
(g-c-d x y))))



Proof of Lemma 2

Lemma 2 Ifz,y,z € N and x is relatively prime to both
y and z, then x 1s relatively prime to yz.

This is a consequence of the following basic properties of gcd
and primes:

(1) ged(x,y) divides both x and y.

(2) If d divides both x and y, then d divides ged(z,y).
(3) If x > 1, then some prime divides .

(4) If a prime p divides ab, then p divides either a or b.

[t would take some work to prove these in ACL2. Fortunately,
there is a more direct route to CRT.



Alternate Approach

Lemma 3 Let x,y1,vy2,... ,yr E Nand p=1y;---yr. If
x 1s relatiely prime to each y;, then there exist c,d € Z
such that cx + dp = 1.

Proof: Let p’ = 41 - - - yr_1. Assume that
re 4+ syp =1
and, by induction, that
do+dp =1.
Then

(sd)p = (sy)(d'P')
= (1—rx)(1-cz)

= 1—(r+cd —rdx)x.
Thus,if c=r + ¢ —rdx and d = sd’, then
cr+dp = 1.



Formal Proof

(defun ¢ (x 1)
(if (endp 1)

0
(- (+ (r x (car 1))
(c x (cdr 1)))
(* (r x (car 1))
(¢ x (cdr 1))
x))))

(defun d (x 1)
(if (endp 1)
1
(x (s x (car 1))
(d x (cdr 1)))))

(defthm c-d-lemma
(implies (and (natp x)
(natp-all 1)
(rel-prime-all x 1))
(= (+ (*x (c x 1) x)
(x (d x 1) (prod 1)))
1)))
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Definition of crt-witness

(defun one-mod (x 1)
(* (dx 1)
(prod 1)
(4 x 1)
(prod 1)))

(defthm rem-one-mod-1
(implies (and (natp x)
> x1)
(natp-all 1)
(rel-prime-all x 1))
(= (rem (one-mod x 1) x) 1)))

(defthm rem-one-mod-0
(implies (and (natp x)
> x1)
(rel-prime-moduli 1)
(rel-prime-all x 1)
(member y 1))
(= (rem (one-mod x 1) y) 0)))

(defun crtl (am 1)
(if (endp a)
0
(+ (x (car a) (one-mod (car m) (remove (car m) 1)))
(crtl (cdr a) (cdr m) 1))))

(defun crt-witness (a m) (crtl am m))

11



The Main Lemma

We prove the following generalization of CRT"

(defthm crti-lemma
(implies (and (natp-all a)
(rel-prime-moduli 1)
(sublistp m 1)
(= (len a) (len m)))
(congruent-all (crtl am 1) a m)))

The proof is by induction, as suggested by the definition:

(defun crtl (am 1)
(if (endp a)
0
(+ (* (car a) (one-mod (car m) (remove (car m) 1)))
(crtl (cdr a) (cdr m) 1))))

In the inductive case, the conclusion of the lemma expands
as follows:

(and (congruent (+ (* (car a)
(one-mod (car m) (remove (car m) 1)))
(crtl (cdr a) (cdr m) 1))
(car a)
(car m))
(congruent-all (+ (* (car a)
(one-mod (car m) (remove (car m) 1)))
(crt1l (cdr a) (cdr m) 1))
(cdr a)
(cdr m))).
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The Final Result

CRT is derived as an instance of crtl-lemma:

(defthm crti-lemma
(implies (and (natp-all a)
(rel-prime-moduli 1)
(sublistp m 1)
(= (len a) (len m)))
(congruent-all (crtli am 1) a m)))

(defthm chinese-remainder-theorem
(implies (and (natp-all a)
(rel-prime-moduli m)
(= (len a) (len m)))
(and (natp (crt-witness a m))
(congruent-all (crt a m) a m))))
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