ACL2 Computed Hints:

Extension and Practice

Jun Sawada
IBM Austin Research Laboratory
Email: sawada@Qus.ibm.com

Abstract

ACL2 computed hints dynamically calculate advice to the ACL2
theorem prover during a mechanical proof. We wrote an ACL2 book
that adds a number of useful functions and macros to ease the use
of computed hints. The combination of these macros can specify a
complex condition under which a certain hint is invoked. We will also
review the usage of computed hints in the FM9801 project.

1 Introduction to ACL2 Computed Hints

ACL2 is an automated theorem prover, in the sense that it attempts to
prove theorems without step-by-step human assistance. When the user wants
to guide the direction of a mechanical proof, he can supply hints to the
prover. Typically, a hint is given as an alternating list of hint keywords and
arguments, preceded by a goal-spec, A goal-spec is a character string, such
as "Goal" and "Subgoal *1.2/3.4", that specifies the subgoal to which the
hint is applied.

For example, the following defthm applies the :in-theory hint to the
subgoal named "Goal’".

(defthm test-one (implies (f x) (g x y))
thints (("Goal’" :in-theory (enable g-is-true))))

ACI2 provides the computed hint mechanism [KM99] which dynamically
calculates hints to the prover. A computed hint can be either a function of
three arguments, or an expression possibly with free variables, id, clause,
and world, which represent the goal-spec, the target clause and the property
list storing the state of ACL2. All computed hints discussed in this paper
are in fact macros that generate expressions of the latter form.

We defined a computed hint book that extends the ACL2 computed hint
mechanism. The small book with 270 lines of ACL2 functions and macros
eases the specification of computed hints. In the following sections, we will
look at the major features implemented by this library.

2 Goal-Spec Extension

An ordinary ACL2 hint can be applied to a single subgoal, whose goal-spec
is provided by the user. The first extension provided by our computed hint
library enables us to collectively specify the subgoals to which the hint is
applied.

Our computed hint library extends clause identifiers to specify sets of
subgoals. A clause identifier is an internal representation of a goal-spec.
For example, the goal spec "Subgoal *1.2.3/4.5.6°’" is represented by a
clause identifier ((0 1 2 3) (4 5 6) . 2). (See [KM99] for details.) We specify
a set of clause identifiers using wild cards *. Table 1 lists a correspondence
between clause identifiers with wild cards and goal-specs.

Macro when-GS-match takes a clause identifier with wild cards, and an
alternating list of hint keywords and arguments. In the following defthm,
the :in-theory hint is invoked for any "Subgoal n" for arbitrary n.

(defthm f-iterated
(and (f x) (f (f x)) (£ (f (f x))))
:hints ((when-GS-match ((0) (%) . 0)
:in-theory (enable f-is-true))))

The current version of ACL2 removes invoked computed hints from the
list of hints passed to the descendent subgoals. Therefore, the computed hint
may not be invoked on all subgoals specified by the clause identifier with wild
cards. An easy workaround to apply a computed hint to descendent subgoals
is adding duplicate copies of the computed hint to the list of hints.

Clause ID with wild cards | Corresponding goal-specs

(x % . %) Any goal-specs

((012) . 2) Subgoal *1.2/ng.ny...n;°°
(0 (1 2% .0 Subgoal *1.2.ng

() (1 2. %) .0 Subgoal *1.2.mg.ny...n;
(B *) (12) . %) [3]1Subgoal *ng/1.2°"’

Table 1: A list of example clause identifiers with wild cards and the corre-
sponding goal-specs. Variable n, ranges over positive integers, and ¢ ranges
over non-negative integers. The goal-spec of the last example is followed by
an arbitrary number of apostrophes. To be precise, ACL2 prints out the
sequence of n apostrophes as “’n’” when n is larger than 3.

3 Occurrence Check and Pattern Matching

Macro when-occur in our library invokes hints when a particular sub-term
occurs in the target clause. For example, the following defthm uses the
lemma foo-is-true whenever a sub-term (foo z) is found in the clause.

(defthm p-is-true-1 (p z)
:hints ((when-occur (foo z)
:use (:instance foo-is-true (x z)))))

A simple extension of this macro is when-multiple-occur, which invokes a
given hint when all the terms in the list given as an argument occur in the
clause.

(defthm p-is-true-2 (p z)
thints ((when-multiple-occur ((buz z) (bar z))
:use (:instance bar-or-buz (x z)))))

The user should know that all macros in the clause are expanded before
occurrence check takes place. Thus, expanded forms of macros, such as
(binary-+ x y) instead of (+ x y), should be given to the computed hint.
Expressions containing logical operators, such as AND, may not be detected
either, even though they may appear in the pretty-printed subgoal.

We can enhance the occurrence checking with pattern matching. First,
we extend the ACL2 syntax by introducing meta-variables. Meta-variables

are the variables that can be instantiated during pattern matching. A meta-
variable is denoted by a list of the symbol @ and another symbol. For instance,
pattern (f x (@ z)) can be matched to the term (f x y) by instantiating
meta-variable (@ z) with y.

Macro when-pattern invokes a hint when a subexpression of the target
clause is an instance of a given pattern. Meta-variables in the hint are in-
stantiated in the way the pattern is instantiated. In the following example,
macro when-pattern finds that the pattern (f (@ z)) matches (f (f y))
by instantiating (@ z) with (f y). Thus, the hint is instantiated to :use
(:instance f-is-true (x (f y))) before invoked.

(defaxiom f-is-true (f x) :rule-classes nil)

(defthm f-of-f-of-x (f (f y))
thints ((when-pattern (f (@ z))
:use (:instance f-is-true (x (@ z))))))

In fact, there are two possible pattern matchings for this example, de-
pending on whether meta-variable (@ z) is instantiated with y or (f y).
The current implementation of when-pattern uses the first instantiation
found by the pattern matcher, and ignores the rest.

4 Literal Matching

The ACL2 theorem prover converts a given ACL2 formula into a conjunctive
normal form, and then attempts to prove each clause separately. A clause is
a disjunction of literals, where a literal is an atomic formula or the negation
of one. We say that an atomic formula occurs positively for the former case,
and negatively for the latter case.

For example, consider an expression (IMPLIES (AND (NOT p) ¢) r), where
p, g, and r are either constants, variables, or applications of functions other
than built-in boolean functions. ACL2 converts the expression into a clause
pV =gV r. In this clause, p and r occur positively and ¢ occurs negatively.

Macros when-occur-negative and when-occur-positive invoke hints
when a given term occurs negatively and positively, respectively, in the target
clause. For example, let us consider the following defthm.

(defthm complex-lemma
(and (implies (f y) (f (g x x)))
(implies (h (h y)) (and (h y) (g x y))))

:rule-classes nil

:hints ((when-occur-negative (h (h y))
:use (:instance h-h-x-is-false (x y)))

(when-occur-positive (f (g x x))

:use (:instance f-is-true (x (g x x))))))

From the body of this defthm, three clauses are generated: —(f y) VvV (f (g
x x)), 7(h (hy)) V (hy)and -(h (h y)) V (g x y). The attached
computed hints invoke Lemma f-is-true for the first clause, and Lemma
h-h-x-is-false for the last two clauses.

The computed hint library also defines macro when-pos/neg-occur, which
combines literal matching with pattern matching.

5 Combination of Computed Hints

In the preceding sections, we have seen separate use of macros defined in our
computed hint book. However, the real strength of these macros can be seen
when they are combined.

Most of the macros in our computed hint book have the versions with -&
suffices, which take a computed hint as an argument instead of an alternating
list of hint key words and their arguments. For example in the following
defthm, macro when-not-GS-match-& and when-pattern are combined.

(defthm f-iterated-2
(and (f x) (f (f x)) (f (f (f x))))
:hints ((when-not-GS-match-& ((0) nil . 0)
(when-pattern (f (@ v))
:use ((f-is-true ((x (@ v)))))))))

This hint is invoked when a pattern (f (@ v)) is found in the clause and
when the goal-spec is not "Goal". With the simple use of when-pattern
macro, the ACL2 does not successfully prove the theorem, because the hint
is invoked for "Goal" and removed from the list of hints passed to the de-
scendent subgoal. By combining two macros, we can successfully prove the

theorem by invoking the computed hint for "Subgoal 1", "Subgoal 2" and
"Subgoal 3" with different instantiations.

6 Computed Hints in Practice

We discuss the use of computed hints in the FM9801 project. The FM9801
[Saw99a] is a microprocessor model with various features found in today’s
microprocessors: speculative execution with branch prediction, out-of-order
execution of instructions with multiple pipelined execution units, and excep-
tions. We mechanically verified that the entire FM9801 microarchitectural
model implements its ISA model using the ACL2 theorem prover. Its proof
script is publicly available [Saw99b].

There are two merits of using computed hints in a large-scale project like
FM9801. One is the improved robustness of the proof script, and the other
is the conciseness of the proof script and the improved proof automation.

The FM9801 proof script contains more than 700 function definitions
and 3800 theorems. For a hardware verification project of this size, the
robustness of the proof script is important. Otherwise, the mechanical proof
fails on already proven theorems after a slight modification of a hardware
model.

Goal-specs given to an ordinary hint are one source of fragility in proof
scripts. Slight modification of function definitions may change the goal-spec
for a particular subgoal. With the computed hint with occurrence check, we
can invoke hints for proper subgoals without specifying the exact goal-specs.

Unlike an ordinary hint, the computed hint can specify hints for multiple
subgoals. The proof of a complex theorem generates a number of subgoals,
many of which can be solved by applying the same lemma. Such subgoals
often contain common sub-terms, which can be the triggers of the computed
hint that invokes the necessary lemma. This type of computed hints sub-
stantially improve the automation of the mechanical proof, eliminating the
need of explicitly specifying all the subgoals to which the lemma should be
applied.

ACL2 computed hints have huge potential, but our book only covers very
limited applications. We have not used the state variable world yet. In
fact, the implementation of our computed hint extensions are relatively easy
because internal structure of variables id and clause are simple. In order

to implement macros that access the world variable, we need know how the
variable stores the ACL2 state.

Even though we did not explore all the possibilities of computed hints,
our exercise clearly points to the advantage of computed hints. We hope in
the future more ACL2 users will use computed hints in their projects.

References

[KM99]

[Saw99a]

[Saw99b)]

Matt Kaufmann and J Strother Moore. ACL2: A Compu-
tational Logic for Applicative Common Lisp, The User’s Man-
ual. 1999. URL:http://www.cs.utexas.edu/users/moore/acl2/acl2-
doc.html#User’s-Manual.

Jun Sawada. Formal Verification of an Advanced Pipelined Ma-
chine. PhD thesis, University of Texas at Austin, Decem-
ber 1999. Also available from http://www.cs.utexas.edu/users/-
sawada/dissertation/diss.html.

Jun Sawada. Verification scripts for FM9801 pipelined micro-
processor design, 1999. URL:http://www.cs.utexas.edu/users/-
sawada/FM9801/.

