An Incremental Stuttering Refinement Proof
of a Concurrent Program in ACL2

Rob Sumners

Advanced Micro Devices

UT/Austin

ACL2 Workshop
October 31, 2000

| Overview |

e Introduction
— A brief history...
— Definition of the Concurrent Deque Program

o The definition and use of records

— Specification Program

e Stuttering Refinement
— Definition and Proof Requirements

— Proof Strategies:

o Reduction to single-step, Incremental stages, Distribution
over process composition, Introduction of auxiliary var.s

e Chain of refinement proofs:

cdeq <-> cdeq+ <-> intr <-> intr+ >> spec

— Using the ACL2 proof checker

| A Brief History... |

e Some time ago, Sandip Ray, Greg Plaxton, and Robert
Blumbhofe presented their proof of the implementation of
a concurrent deque at an ACL2 meeting

(

— The implementation is “wait-free” and was used in a process

scheduler based on work-stealing

e While their statement of correctness was elegant, their
proof was complicated by the details of the implementa-
tion

— It appeared to be a good candidate for ACL2

e Our approach is to prove that their concurrent pro-
gram is a stuttering refinement of a much-simpler pro-
gram whose correctness is (hopefully) apparent

— The use of stuttering refinement allows the specification to
match any finite number of steps in the implementation with a
single step

— Consequently, eventual progress in the implementation can be
analyzed by examining the possible steps of the specification

| Concurrent Deque Introduction |

e The concurrent deque program cdeq consists of:

— A single owner process which can push values onto and pop
values from the bottom of the deque

— An arbitrary (but fixed) number of thief processes which can
pop values from the top of the deque

e Thief processes resolve contention for the top of the
deque by testing-and-setting the top pointer of the deque

e The Owner may also contend with the Thieves for the
last element in the deque, in which case it may also test-
and-set the top pointer

— In this case, the owner also clears the top and bottom pointers
by setting them to memory address 0

e We would like to show that eventually some process
pops from a non-empty deque

e Convention: capitalized variables are shared amongst
processes, while lowercase variables are local to a process

| cdeq state structure |

cdeq state — a record of:
shared — record storing shared var.s:
MEM — a vector of data values
RET — the last successful pop
C LK — labels each pop uniquely
BOT — MEM address of the bottom
AGFE — a pair of numbers:
tag — uniquely identify same tops
top — M EM address of the top
owner — record storing local var.s:
loc — current program location
dtm — next value to push
bot — local copy of BOT
old — local copy of AGE
new — modification of old
1tm — data value to be returned
ret — a local return value
thieves — a vector of records, where each one stores
the local var.s of a thief (same as owner, w/o dtm)

cdeq input — a record of:
N — process selector
P — select push or pop
D — data value to push

0 AGE.top BOT

¢ '

MEM DEQUE

loc

19
20
21

© 00 ~J O U i W=

—_ =
)

e e
= o N

15
16
17
18

| cdeq next-state program |

owner(push, D)(o, S) loc
if push then
dtm < D
bot + BOT
MEMT bot] + dtm
bot < bot + 1
BOT <+ bot
else ;; pop
bot «+— BOT
if bot = 0 then
return nil 9
bot < bot — 1 10
BOT <+ bot 11
itm < M EM][bot]
old +— AGE
if bot > old.top then
RETURN #tm
BOT < 0
new.tag, new.top < old.tag,0
new.tag <— new.tag + 1
if bot = old.top then
if old = AGFE then
new, AGE +— AGE,new
if old = new then
RETURN iétm
AGE < new

return nil

O O O WK

thief()(f,S)

old +— AGE

bot +— BOT

if bot < old.top then
return nil

itm < M EM]old.top)

new < old

new.top <— new.top+ 1

if old = AGFE then
new, AGE +— AGE, new

if old = new then
RETURN itm

return nil

cdeq(in)(st)
if in.N then
thieves[in.N], shared <
thief ()(thieves|in.N|, shared)
else
owner, shared <
owner (in.P,in.D)(owner, shared)

e Step 8 of the thief program and step 14 of the owner
program are ‘compare-and-swap’ operations

| Defining records in ACL2 |

e Made extensive use of records in the definitions and
proofs

— Records are essentially alists where the keys are ordered

— Allows a fixed set of reduction rules for record access and update

o Similar to Matt Wilding and Dave Greve’s rules for nth and
update-nth

— Importantly, we can use symbols for the field names which
improves the readability of the ACL2 output

— Matt Kaufmann made a significant contribution by removing
the recordp hypotheses from the reduction rules

;; (g ar) -- record get —-
N returns the value stored in field a in record x
;; (8 avr) --record set —-

returns a record with the value v stored in field a
and all other fields with the values in r

2

2

(defthm g-diff-s
(implies (and (force (fieldp a))
(force (fieldp b))
(not (equal a b)))
(equal (g a (s b v r))
(g ar))))

| cdeq definition in ACL2 |

e Definition of the thief next-state program in ACL2

(>s :ret (itm f) :clk (1+ (clk s)))
macro expands to
(s :ret (g :itm f) (s :clk (1+ (g :clk s)) s))

(defun c-thf-s (f s)
(case (loc f)
(8 (if (equal (age s) (old £))
(>s :age (new f))
s))
(10 (>s :ret (itm f) :clk (1+ (clk s))))
(t s)))

(defun c-thf-f (f s)
(case (loc f)
(0 Of :loc 1))
(1 (f :loc 2 :0ld (age 8)))
(2 (f :loc 3 :bot (bot s)))
(3 (>f :loc (if (> (bot f) (top (old £))) 5 4)))
(4 (Of :loc 0 :ret nil))

(6 (>f :loc 6 :itm (val (g (top (old f)) (mem s)))))
(6 (>f :loc 7 :new (old £)))

(7 (>f :loc 8 :new (top+l (new £))))

(8 (>f :loc 9 :new (if (equal (age s) (old £f))

(age s) (new £))))
(9 (>f :loc (if (equal (old f) (new f)) 10 11)))
(10 (>f :loc 0 :ret (itm £f)))
(11 (>f :loc O :ret nil))
(t (Of :loc 0))))

| Specification Program, spec |

spec(in)(st)
if in.N then
if thieves[in.N]|
RET « thieves|in.N]|
CLK < CLK +1
thieves[in.N| < nil
else if steal-last(DEQ, owner,in)
thieves[in.N| < owner.itm
owner.itm < nil
else
thieves[in.N| < get-top(DEQ)
DEQ < drop-top(DEQ)
else
case owner.loc
PUSH:
DEQ < push-bot(owner.dtm, DEQ)
owner.loc < ’'IDLE
POP:
RET <« or(owner.itm, RET)
CLK < CLK +1
owner.itm < nil
owner.loc < ’IDLE
IDLE:
if in.push then
owner.dtm < in.D
owner.loc < 'PUSH
else
owner.itm < get-bot(DEQ)
DEQ <+ drop-bot(DEQ)
owner.loc < 'POP

— label(st) = list (CLK ,RET ,owner.dtm)

| Trace Refinement |

e A step function impl is a trace refinement (=>) of the
step function spec w. r. t. (label, inv) if for every run
of imp1l, there exists a run of spec such that the sequence
of labels for each run correlate

— The predicate inv defines the “well-formed” impl states

e Reasoning about infinite runs is awkward, instead re-
duce trace refinement to single-step theorems:

(defthm labels-equal-=>
(equal (label (rep st)) (label st)))

(defthm inv-persists-=>
(implies (inv st)
(inv (impl in st))))

(defthm rep-matches-=>
(implies (inv st)
(equal (rep (impl in st))
(spec (pick in st) (rep st)))))

— rep maps impl states to spec states and pick chooses an input
for a spec state given the current impl state and input

— Trace refinement requires impl and spec to move in lock-step

| Stuttering Refinement |

e Alternative is to prove stuttering refinement (>>)

— Trace refinement with “sequence of labels” replaced by “com-
pressed sequence of labels”

e Again, we would like to reduce this to a single-step
criterion:

(defthm well-founded->>
(bounded-ordp (rank st) (rank-depth)))

(defthm rep-matches->>
(implies (and (inv st)
(not (equal (rep (impl in st))
(spec (pick in st) (rep st)))))
(and (equal (rep (impl in st))
(rep st))
(e0-ord-< (rank (impl in st))
(rank st)))))

— Originally defined in [Namjoshi97] and refined in [Manolios99]

— Introduce a rank function which maps states to e0-ordinals
and demonstrate that this measure decreases when the spec and
impl states don’t commute

— A sufficient condition to ensure stuttering equivalence (<=>) is
if pick is the identity function on in

| Refinement Proof Strategy |

e Stuttering refinement is compositional

— ((impl >> intr) and (intr >> spec)) implies (impl >> spec)

— Allows incremental proof of stuttering refinements by defining
intermediate models and then chaining together each intermediate
refinement step

— We use intermediate steps to introduce auxiliary variables which
help to correlate different step functions

cdeq <-> cdeqg+ <-> intr <-> intr+ >> spec

e Stuttering refinement distributes over asynchronous pro-
cess composition

— If ((spec is spl||sp2) and (impl is im1|[im2) and (iml >>
spl) and (im2 >> sp2)) then (impl >> spec)

— This property allows us to define the functions rep and rank
component-wise

o For example, rep is defined by rep-owner, rep-shared,
and rep-thieves. rep-thieves is defined as rep-thief for
each thief process

e Basic goal in defining intr: component-wise stuttering
equivalence

| Defining intr and (cdeg+ <-> intr) |

e An additional goal in defining intr was to translate
the deque in M EM to a true-list using:

(defun mend (bot top mem)
(and (integerp bot)
(integerp top)
(> bot top)
(cons (g (1- bot) mem)
(mend (1- bot) top mem))))

e The strategy in defining intr-thf and intr-onr was
to hide local steps:

loc cdeq+-thf()(f,S) loc intr-thf()(f,S)
0 skip 0
1 old +— AGE 0 ctr < CTR
zctr <+ XCTR
2 bot < BOT 1 itm < get-top(DEQ)

zitm < and(BOT > AGE.top,
MEM|[AGE top))

3 if bot < old.top then 2
4 return nil 0
5 itm < M E M]Jold.top) 2 :: the following test passes iff DEQ
6 new < old 2 ;; was non-empty and we “succeed”
7 new.top <— new.top + 1 2
8 if old = AGE then 2 if and(itm, ctr = CTR)
new, AGE < AGE,new DEQ < drop-top(DEQ)
XCTR <+ XCTR+1 CTR<+ CTR+1
9 if old = new then 0|8
10 RETURN itm 3 RETURN tm

11 return nil 0

| Proving (cdeg+ <-> intr) |

e Restructured rep-matches->> to afford more direct

proof with ACL2

— The predicate suff is a sufficient condition for
rep-matches->>, but is not required to persist

— The predicate commit defines the cases when intr can match
the next cdeq+ step

(defthm >>-stutterl
(implies (and (suff st in)
(not (commit st in)))
(equal (rep (cdeg+ in st))
(rep st)))

(defthm >>-stutter2
(implies (and (suff st in)
(not (commit st in)))
(e0-ord-< (rank (cdeqg+ in st))
(rank st)))

(defthm >>-match
(implies (and (suff st in)
(commit st in))
(equal (rep (cdeg+ in st))
(intr (pick in st) (rep st)))))

(defthm >>-invariant-sufficient
(implies (inv st) (suff st in))

| Proving (cdeg+ <-> intr) cont’d |

e After proving some simple rules about the variable
translations (see below) the above theorems went through
with little or no assistance

(equal (get-top (mend bot top mem)) (val (g top mem)))

e The time required to prove (cdeq+ <-> intr) was es-
sentially the time required to discover the correct defini-
tions and to prove inv-persists->>

— Several iterations were required to strenghten suff to inv

o For instance, while the following is sufficient for cdeq+ at loc
8:
(equal (equal (age s) (old f))
(= (xctr f) (xctr s)))

o The invariant required this stronger condition to hold from
locs 2-8:
(if (equal (age s) (old £f))
(= (xctr f) (xctr s))
(and (age<< (old f) (age s))
(< (xctr £f) (xctr s))))

| Defining and Proving (intr+ >> spec) |

e While the nature of (cdeq+ <-> intr) was straightfor-
ward, (intr+ >> spec) is a little more subtle

— Yet, the relative simplicity of intr+ compared with cdeq+
significantly reduced the complexity of proving (intr+ >> spec)

e Since the spec thief does not fail when the deque is
non-empty, we need to hide failing intr+ thief executions

— rank function used in (intr+ >> spec)

(defun rank (st)
(if (consp (deq (shr st)))
(cons (cons (rank-onr (onr st))
(miss-count (tvs st) (max-thf)
(ctr (shr st))))
(rank-tvs-non-empty (max-thf) (tvs st)))
(cons (rank-onr (onr st))

(rank-tvs-empty (max-thf) (tvs st)))))

— Once the proper definitions were discovered, the proof of (intr+
>> spec) was essentially automatic

— The added non-determinism in spec allows us to hide the detail
of when a thief can steal at the cost of proving <->

| Using the ACL2 proof checker |

e Finally, I found the ACL2 proof checker to be an indis-
pensable tool for:

— Working through theorems with large case splits, Analyzing the
type-alist, Diagnosing failed rewrite attempts, Defining pc-macros
for handling repetitive tasks

ACL2 !'>(set-inhibit-output-1lst ’(proof-tree prove))
(PROOF-TREE PROVE)

. additional definitions, theorems ...

. begin interaction cycle ...

ACL2 !'>(defun inv-onr (o s) ...)

ACL2 !'>(verify (implies (and (inv-shr s)
(inv-onr o s)
(assume-thf f s))

(inv-onr o (c+-thf-s f s))))
->: bash
**x*x*x*x Now entering the theorem prover **xxx
. subgoals which failed simplification ...
->: (repeat prove)

. stops on first goal (if any) which fails the full prover ...

. we examine this goal to determine why it failed ...
->: exit
ACL2 !> :u
ACL2 !> (defun inv-onr (o s) ... update the invariant ...)
ACL2 !> (verify (implies (and (inv-shr s)
. repeat verify attempt ...

| Acknowledgements and Future Work |

e Acknowledgements:

— Ray, Plaxton, and Blumhofe posed the initial challenge

— Sandip provided additional input and analysis of the work pre-
sented

— Pete made many useful suggestions and pointed out an error in
an earlier labeling function

— Matt made significant improvements to the records book and
answered many questions about the proof checker

e Future Work
— Many concurrent programs seem amenable to this style of ver-
ification in ACL2

o Secure Atomic Transaction Processors, Concurrent Garbage
Collectors, ...

— Currently, we are working on a proof of an implementation of
the Bakery algorithm at a micro-architectural level

