Correctness Proof of a BDD Manager in the
Context of Satisfiability Checking

Rob Sumners

Advanced Micro Devices

UT/Austin

ACL2 Workshop
October 31, 2000

| Overview |

e Initial Concepts/Definitions
— A short review of Single-Threaded Objects (stobjs)
— Propositional Satisfiability Checking
o When is a sat. checker correct?” Why is this our goal??

— Binary Decision Diagrams

e Definitions and Theorem Proving
— Definition and Use of Simple BDD functions
— Definition and Proof of Stobj BDD functions

o Invariant of the BDD manager stobj

e Optimizations, Extensions, and Experiments

e WARNING - There were 431 occurrences of the three
letters “bdd” in the paper — my sincerest apologies

| Previous Work |

e [Bryant86] introduced the use of Reduced Ordered Bi-
nary Decision Diagrams as a canonical representation of
boolean functions

e Numerous extensions/applications

— “Symbolic X” where X € { model checking, equiv. checking,
trajectory evaluation, ... }

— Dynamic variable reordering, Multi-valued DDs, Zero-
suppressed DDs, ...

e [Moore94] implemented BDD algorithms in ACL2, Kauf-
mann then added term-level BDDs to the ACL2 prover

— triggered by the :bdd theorem hint

e [Harrison95] interfaced BDDs to HOL as a derived rule

e [Verma,Goubault-Larrecq00] implemented and verified
a BDD implementation in the theorem prover Coq

— Our approach is similar, but the use of stobjs improves perfor-
mance significantly

| Single-Threaded Objects (stobjs) |

e User provides declarations that certain objects are single-
threaded

— Single-threadedness is then enforced through syntactic restric-
tions

o Restrictions ensure that destructive operations coincide with
applicative semantics

o The ACL2 state is a built-in stobj

e Stobj array fields are lists in the logic, but common lisp
arrays under-the-hood

— important for fast access and update

e Stobjs were initially used by Greve, Hardin, and Wild-
ing to develop an efficient hardware simulator in ACL2

| Propositional Terms |

e A propositional term is either:
— A propositional constant — either T or nil
— A propositional variable — represented by a positive integer
— A decision node — (dn test then else)

o where test,then,else are propositional terms

(defun prop-ev (f a)
(cond ((prop-varp f) (prop-look f a))
((atom f) (if £ T nil))
(t (prop-if (prop-ev (test f) a)
(prop-ev (then f) a)
(prop-ev (else f) a)))))

(defun prop-varp (x) (and (integerp x) (> x 0)))

(defun prop-look (v a)
(cond ((endp a) nil)
((equal v (caar a))
(if (cdar a) T nil))
(t (prop-look v (cdr a)))))

(defun prop-if (f g h) (if f g h))

| Satisfiability Checking |

e A propositional satisfiability checker sat-check is a
function which takes a term and returns nil iff for all a,
(prop-ev f a) = nil

— In ACL2, we verify sat-check by defining a function
sat-witness and prove the following:

(defthm sat-check-is-correct
(if (sat-check f)
(prop-ev f (sat-witness f))
(not (prop-ev f a))))

e Our goal is to define and verify a sat. checker using our
BDD implementation

— Why?? a sat. checker has a clear and complete statement of
correctness, the BDD functions (in my opinion) do not

| Binary Decision Diagrams |

e (Reduced Ordered) BDDs are propositional terms which
are restricted to satisfy the predicate robdd below
(defun robdd (f)

(or (booleanp f) ;; leaves are T or nil
(and (consp f)
(bdd-test> £ (then f)) ; ; ORDERED

(bdd-test> £ (else f))

(not (bdd= (then f) (else f))) ;; REDUCED

(pnatp (test f)) ;; test is a variable
(robdd (then f))

(robdd (else £)))))

(defun bdd= (f g)
(cond ((and (atom f) (atom g)) (iff f g))
((or (atom f) (atom g)) nil)
(t (and (equal (test f) (test g))
(bdd= (then f) (then g))
(bdd= (else f) (else g))))))

(defun bdd-test> (f g)
(or (atom g) (> (test f) (test g))))

e Now prove that (RO)BDDs are canonical
(defcong bdd= equal (prop-ev f a) 1)

(defthm robdd-not-bdd=-implies-not-prop-ev-=
(implies (and (robdd f) (robdd g)
(not (bdd= £ g)))
(not (equal (prop-ev f (robdd-witness f g))
(prop-ev g (robdd-witness f g))))))

| Proof Strategy |

e Stobj functions are forced to explicitly denote (and re-
turn) any updates to the stobj variable

— Reasoning about stobj functions is analogous to reasoning about
state machines

— The stobj holds the state and functions only return correct
values with “well-formed” states and inputs

— “well-formed” should be an invariant preserved by every stob]
update

e Approach:
— Define Simple stobj-free function counterparts

— Prove the necessary properties about the Simple functions

— Prove the Stobj functions are consistent with the Simple func-
tions in well-formed states

o Prove that well-formed is an invariant of the Stobj functions

| Simple BDD functions |

e Definition and selected properties of the simple spec
functions

(defun eql-spec (f g) (bdd= f g))
(defun var-spec (n) (dn n T nil))
(defun ite-spec (f g h)

(if (atom f) (if £ g h)
(let ((v (top-var f g h)))

(let ((then (ite-spec (v-then f v)
(v-then g v)

(v-then h v)))
(else (ite-spec (v-else f v)
(v-else g v)

(v-else h v))))

(if (bdd= then else) then
(dn v then else))))))

(defthm ite-spec-returns-robdds
(implies (and (robdd f) (robdd g) (robdd h))
(robdd (ite-spec f g h))))

(defthm ite-spec=prop-if-under-prop-ev
(implies (and (robdd f) (robdd g) (robdd h))
(equal (prop-ev (ite-spec f g h) a)
(prop-if (prop-ev f a)
(prop-ev g a)
(prop-ev h a)))))

| Reductions of ite-spec |

e Proofs of various reductions for ite-spec

— Allows optimization in the stobj function ite-bdd

(defthm ite-spec-reduction-1
(implies (robdd f)
(bdd= (ite-spec f T nil) £)))

(defthm ite-spec-reduction-2
(implies (and (robdd g) (robdd h) (bdd= g h))
(bdd= (ite-spec f g h) g))

(defthm ite-spec-reduction-3
(implies (and (robdd f) (robdd g) (robdd h) (bdd= f g))
(bdd= (ite-spec f g h)
(ite-spec £ T h))))

(defthm ite-spec-reduction-4
(implies (and (robdd f) (robdd h) (bdd= f h))

(bdd= (ite-spec f g h)
(ite-spec f g nil))))

e FExample reduction:

(and £ f) => (ite f f nil) => (ite £ T nil) => f

| Stobj BDD functions |

e We now define the stobj-based BDD functions

(defun eql-bdd (x y)
(if (atom x) (and (atom y) (iff x y))
(and (comsp y) (eql (tag x) (tag y)))))

(defun var-bdd (n bdd-mgr) (get-unique n T nil bdd-mgr))

(defun ite-bdd (f g h bdd-mgr)
(cond ((atom f) (if f (mv g bdd-mgr) (mv h bdd-mgr)))

((and (eq g T) (mot h)) (mv f bdd-mgr)) ;; redux-1
((eql-bdd g h) (mv g bdd-mgr)) ;; redux-2
((eql-bdd f g) (ite-bdd £ T h bdd-mgr)) ;; redux-3

((eql-bdd f h) (ite-bdd f g nil bdd-mgr)) ;; redux-4
(t (let ((entry (find-result f g h bdd-mgr)))
(if entry (mv (ite-rslt entry) bdd-mgr)
(seq ((v (top-var f g h))
((then bdd-mgr) (ite-bdd (v-then f v)
(v-then g v)
(v-then h v)
bdd-mgr))
((else bdd-mgr) (ite-bdd (v-else f v)
(v-else g v)
(v-else h v)
bdd-mgr))
((rslt bdd-mgr)
(if (eql-bdd then else) (mv then bdd-mgr)
(get-unique v then else bdd-mgr)))
(bdd-mgr (set-result f g h rslt bdd-mgr)))
(mv rslt bdd-mgr)))))))

(defun free-bdd (keep bdd-mgr)
(let ((bdd-mgr (init-bdd bdd-mgr)))
(rebuild-bdds keep bdd-mgr)))

| Lemmas about Stobj functions |

e Main properties needed about the stobj BDD functions

(defthm eql-bdd-is-correct
(implies (and (uniq-tbl-inv bmr)
(in-uniq-tbl f bmr)
(in-uniq-tbl g bmr))
(iff (eql-bdd f g) (bdd= f g))))

(defthm ite-bdd-preserves-in-unig-tbl
(implies (in-uniq-tbl b bmr)
(in-unig-tbl b (mv-nth 1 (ite-bdd f g h bmr)))))

(defthm ite-bdd-is-correct
(implies (and (bdd-mgr-inv bmr)
(in-unig-tbl f bmr)
(in-unig-tbl g bmr)
(in-uniq-tbl h bmr)
(robdd f) (robdd g) (robdd h))
(mv-let (r nbm) (ite-bdd f g h bmr)
(and (in-uniq-tbl r nbm) ;; Step 1
(bdd-mgr-inv nbm) ;; Step 1,2
(bdd= r (ite-spec f g h)))))) ;; Step 2

e The predicate unig-tbl-inv isimplied by bdd-mgr-inv,
but the weaker assumption in eql-bdd-is-correct is
necessary for the proof of ite-bdd-is-correct

| The BDD-manager invariant |

(defun uniq-tbl-inv (bmr)
(let ((unig-lst (flatten (unig-tbl bmr)))
(rslt-1st (rslt-tbl bmr)))
(and (integerp (next-tag bmr))

(consesp uniqg-1st)

(codes-match (unig-tbl bmr) 0)
(no-dup-tags uniq-1st)

(no-dup-nodes uniq-1st)

(contained unig-1st uniqg-1st)
(tags-bounded uniq-1lst (next-tag bmr))
(rslts-contained rslt-1lst unig-1st))))

(defun bdd-mgr-inv (bmr)
(and (unigq-tbl-inv bmr)
(ite-results (rslt-tbl bmr))))

1. (codes-match (unig-tbl bmr) 0) — Ensures that every BDD node in
the chain at address [in the uniq-tbl hashes to I. This allows us to
reduce the search for a matching node in the uniq-tbl to a matching
node in the chain at the proper hash-code.

2. (no-dup-tags uniq-1st) — No two nodes in the unig-tbl have the
same tag value. This ensures the uniqueness of tags in the bdd-mgr.

3. (no-dup-nodes unig-1lst) — No two nodes in the unig-tbl are bdd=.
This ensures the uniqueness of nodes (w.:~bdd=) in the bdd-mgr.

4. (contained uniq-1st uniq-1st) — Ensures that every bdd node in the
uniq-tbl satisfies the predicate in-uniq-tbl. The predicate (in-unig-tbl
f bmr) returns T iff £ is embedded in the unig-tbl

5. (tags-bounded uniq-1lst (next-tag bmr)) — Every tag of every bdd
node is bounded by next-tag. This allows the use of next-tag as the
tag value for the next bdd node added without invalidating no-dup-tags
above.

| Wrapping Up |

(defun term->bdd (term bdd-mgr)
(cond ((prop-varp term)
(var-bdd term bdd-mgr))
((atom term)
(mv (if term T nil) bdd-mgr))
(t (seq (((f-bdd bdd-mgr)
(term->bdd (test term) bdd-mgr))
((g-bdd bdd-mgr)
(term->bdd (then term) bdd-mgr))
((h-bdd bdd-mgr)
(term->bdd (else term) bdd-mgr)))
(ite-bdd f-bdd g-bdd h-bdd bdd-mgr)))))

(defthm term->bdd-is-correct ;;;; key property
(implies (bdd-mgr-inv bmr)
(mv-let (b nbm) (term->bdd f bmr)
(and (robdd b)
(equal (prop-ev b a)
(prop-ev £ a))))))

(defun bdd-sat? (term bdd-mgr)
(seq ((bdd-mgr (clear-bdd bdd-mgr))
((f-bdd bdd-mgr) (term->bdd term bdd-mgr)))
(mv (not (eql-bdd f-bdd nil)) bdd-mgr)))

(defthm bdd-sat?-is-sat-checker
(implies (bdd-mgrp bmr)
(if (mv-nth O (bdd-sat? f bmr))
(prop-ev f (mv-nth 0 (sat-witness f bmr)))
(not (prop-ev f a)))))

| Optimizations |

e Common Lisp Optimizations
— Macros instead of (non-recursive) Functions

— Type declarations (especially fixnum declarations)

— Efficient function replacements, equal => eq, mod =>
logand, * => ash, etc.

e Memory Management
— Conses are expensive — time and space
— Use a (large) stobj array for allocating nodes

o drawback: limited array sizes in Common Lisp

e Primitive Complement

— Support very fast complementation by pointer manipulation

— Increases normalization of terms and improves usage of result
caches

| Extensions |

e Dynamic Variable Reordering
— BDD size is very sensitive to the ordering of the variables

— May be difficult to determine good ordering statically

— Many BDD managers implement heuristics for performing se-
quences of adjacent variable swaps

e Additional Operations

— Partitioned Image Computation

o Useful for speeding up image computations needed for model
checking

— Projection

o Existential quantification of a set of prop. var.s

e Term-Level BDDs

— Extend BDD proof to terms using encapsulated term evaluator
instead of prop-ev

| Experiments |

e Implemented an optimized BDD manager in order to
permit meaningful comparison with C-compiled BDDs

— Compared with the CUDD package from Colorado/Boulder
compiled with GCC and a hand-translation of the BDD manager
also compiled with GCC

e Comparison performed on Urquhart’s U-problem (be-
low), multiplication of size N bitvectors, and a random
construction

T <= (.CUQ ~ (.ZN <~ (.CUl = (33'2 <~ ...(Sl?N_l <~ .TN)))))

— Tests performed on a Sun UltraSparc using GCC -O3 and Franz
Allegro Common Lisp; execution times are in seconds:

Problem | Parameter(N) | ACL2 | GCC | CUDD
Urquhart 1000 4.3 1.5 2.0
1200 6.5 | 24 3.0
1400 95 | 3.8 4.2
multiply 10 1.4 | 0.3 0.6
11 46 | 1.2 1.0
12 15.8 | 4.5 2.9
random 700 10.1 | 34 4.6
1000 14.4 | 4.8 6.5
1300 13.6 | 4.4 5.8

| Future Work/Wish List |

e Verify optimized BDD manager functions

e Verify term-level BDD implementation

— possible use in ACL2 model/invariant checker

e Wish List

— Attempt all instances of free variables in applications of forward-
chaining rules

— Turn stobj access/update functions into macros

o This accounted for almost 1/2 of the performance gap between
ACL2 and GCC in some cases

o Turn stobj field storage into simple-vector

