Rockwell Collins

Using a Single-Threaded Object to Speed
a Verified Graph Pathfinder

Matthew Wilding

Rockwell Collins, Inc.
Advanced Technology Center

mmwildin@collins.rockwell.com

Abstract

We have written hardware simulators in ACL2 in order to unify high-
speed simulators and formal analysis models [2, 7]. The techniques used
for these simulators extend to other kinds of software, which we demon-
strate in this paper by implementing a much faster version of an algorithm
for graph pathfinding previously verified by J Moore using ACL2 [5]. This
exercise also highlights a weakness in ACL2: the occasional need to add
computational complexity to functions in order to admit them to the logic.

1 Introduction

Formal verification of software requires the availability of a clear, formalizable
specification. Hardware device simulators usually have such a specification as
hardware developers typically understand what the device under development
is supposed to do. We have been building simulators for microprocessor mi-
croarchitectures in the ACL2 logic to support both standard simulator use and
formal, machine-assisted design analysis [2, 7].

An important consideration when writing software is execution efficiency. Our
experience writing hardware simulators with straightforward use of the applica-
tive ACL2 logic is that there are inefficiencies associated with maintaining mul-
tiple copies of the program state. In a benchmark of a toy microarchitecture
model reported in [7], an applicative Common Lisp program executed more
than 100x slower than an equivalent C-language simulator implementation. The
performance difference stems from the overhead associated with “objects” in-
troduced by the Lisp compiler to accommodate Common Lisp arbitrary-sized



Rockwell Collins

integer arithmetic and the the need to maintain multiple copies of program
state. This overhead is unacceptable in software where performance is an issue.

We want to verify software formally, so we would prefer to use an applicative
language such as that supported by the ACL2 theorem prover. However, we
generally cannot tolerate low performance. One important execution optimiza-
tion for applicative programs is to code in a style in which only a single copy
of the program state exists at any instant and use this property to optimize
program execution speed by replacing the data structure operations with fast,
destructive operations. Software that accesses data structures sequentially in
this way is called single-threaded. We have developed several methods for ex-
ploiting single-threadedness in applicative code, such as using Lisp macros to
enforce a single-threaded programming style and building a tool that detects
violations of this style [3].

Fortunately, such homegrown approaches are no longer necessary. At least two
theorem provers have added a capability for efficient execution that exploits
single-threadedness reliably. PVS automatically detects occasions when this
optimization can be made and provides an execution environment that exploits
it [6]. The ACL2 system has also recently been extended to support single-
threaded objects, or stobjs. ACL2 enforces restrictions on the use of stobjs to
ensure that stobjs are not copied, and provides a destructive implementation of
stobjs that allows operations on them to execute quickly [1]. Although stobjs
are relatively new to ACL2, they are basically a user-accessible version of what
has always existed in ACL2 in its handling of STATE [4]. They combine a
functional semantics about which we can reason with a high-speed imperative
implementation.

This paper describes the application of stobjs to speed a small, previously-
verified ACL2 algorithm that finds a path in a directed graph [5]. This small
example illustrates how ACL2 can be used to develop verified programs that
execute efficiently.

2 Moore’s Pathfinder Proof

J Moore presents a proof of a linear-time pathfinding algorithm in [5], and the
corresponding ACL2 input is in the standard ACL2 distribution. It is a good ex-
ample of the development of a verified algorithm using ACL2. The path-finding
algorithm, called linear-find-path, searches a graph to find a path between
two vertices. The algorithm maintains a data structure that represents the ver-
tices that have already been visited (the marked vertices) and does not explore
candidate paths with marked vertices. The algorithm’s theoretical worst-case
complexity is linear in the number of edges in the graph being searched, since
the number of basic operations required to run the algorithm — operations



Rockwell Collins

70—

60—

50 —

Time 40—
(CPU sec)

30—

20—

10—

1 2 3 4 5 6
Graph size
(x100,000 edges)

Figure 1: Execution Time of 1inear-find-path

such as marking a vertex, finding the edges emanating from a vertex, or check-
ing whether a vertex is marked — increases in the worst case linearly as one
increases the number of edges in the graph. The linear-find-path algorithm
is proved to return a path if one exists.

ACL2 can not only verify algorithms but also be used to verify implementations.
The formalization in ACL2 of linear-find-path in [5] is also an implementa-
tion since it is expressed in the executable ACL2 logic. Figure 1 presents the
time required for 1inear-find-path to execute a benchmark. For the purposes
of this benchmark, we construct a graph with vertices 0 to N + 1 where there is
no edge to vertex N + 1 and each of the vertices 0 to N has an edge to each of
the vertices 0 to N. Searching for a path from vertex 0 to vertex N + 1 causes
the algorithm to search (unsuccessfully) the entire graph of N? edges.

The benchmark results appearing in Figure 1 indicate that the implementation
of linear-find-path has time complexity that is somewhat more than linear.
Indeed, linear-find-path is inefficient because the implementations of the un-
derlying data structure operations upon which it depends are inefficient. The
program uses lists to represent the graph and other needed data structures, and
the speed of the data structure operations is slower on larger graphs. If one
considers the basic computational operations to be primitives such as compar-
ing two values or setting a pointer, then the number of operations required to
execute linear-find-path increases in the worst case faster than linearly.



Rockwell Collins

3 A stobj-based implementation

We implement a version of the pathfinding program that uses data structure
operations provided by ACL2’s stobj mechanism so as to improve the speed of
the linear-find-path algorithm. The nonlinear time complexity is the result
of the underlying data structure operations, and by changing the underlying
data structure we can provide a linear-time implementation. We define a single-
threaded object st that contains the data we need.

(defstobj st
(g :type (array list (10000)) :initially nil)
(marks :type (array (integer O 1) (10000)) :initially 0)
(stack :type (satisfies true-listp))
(status :type (integer O 1) :initially 0))

Graph vertices are numbered with a natural less than 10,000. Element g of stobj
st is used to represent the graph by recording in the array element corresponding
to a vertex’s number a list of its children — those vertices to which it has
an edge. Element marks is an array of bits that indicate which vertices have
been already visited. Element stack contains a stack containing the current
path being explored. A final element, status, contains a flag that indicates
with a 1 when the algorithm has failed to find a path. Each of these data
structure elements corresponds to a data structure in the implementation of
linear-find-pathin [5].

We implement a measure function for the path-finding algorithm. Each step of
the algorithm reduces the children of the vertex currently being explored while
maintaining the number of marked vertices, or reduces the number of vertices
not yet marked. Again, this corresponds to what was done in [5], except now it
is defined in terms of the stobj-based data structure.

(defun measure-st (c st)
(declare (xargs :stobjs st
:guard (stp st)))
(cons (1+ (number-unmarked st)) (len c)))

We formalize the notion of a “good” graph using the function graphp-st which
checks that each vertex’s list of children contains only valid vertex numbers. The
function bounded-natp returns whether the its first argument is a natural less
than its second argument, and numberlistp returns whether its first argument
is a true-list containing naturals less than its second argument.

The stobj-based version of the find-path algorithm appears in Figure 2. It works
much as the original in [5], except for its use of the stobj-based operations. Note
that the ACL2 syntactic restrictions on the use of stobjs in definitions guarantee
that st is accessed in a single-threaded way as described in [1].



Rockwell Collins

(defun linear-find-next-step-st (c b st)
(declare (xargs :stobjs st
:measure (measure-st c st)
:guard (and (graphp-st st)
(bounded-natp b (maxnode))
(numberlistp ¢ (maxnode)))
:verify-guards nil))
(if (endp c) st
(let ((cur (coerce-node (car c)))
(temp (number-unmarked st)))
(cond
((equal (marksi cur st) 1)
(linear-find-next-step-st (cdr c) b st))
((equal cur b)
(let ((st (update-status O st)))
(update-stack (myrev (cons (car c) (stack st))) st)))
(t (let ((st (update-marksi cur 1 st)))
(let ((st (update-stack (cons (car c) (stack st)) st)))
(let ((st (linear-find-next-step-st (gi cur st) b st)))
(if (or (<= temp (number-unmarked st)) ; always nil
(equal (status st) 0))
st
(let ((st (update-stack (cdr (stack st)) st)))
(linear-find-next-step-st (cdr c) b st))))))))))))

(defun linear-find-st (a b st)
(declare (xargs :stobjs st
:guard (and (stp st)
(bounded-natp a (maxnode))
(bounded-natp b (maxnode))
(graphp-st st))))
(let ((st (linear-find-next-step-st (list a) b st)))
(if (not (equal (status st) 0))
(mv ’failure st)
(mv (stack st) st))))

Figure 2: Stobj-based pathfinder



Rockwell Collins

4 Comments on the Proof

The stobj-based implementation and the proof of its equivalence with the ver-
ified algorithm of [5] accompany this paper. The proof requires the standard
sort of lemmas needed in ACL2 proofs to guide the theorem prover. The fact
that it is about a program that runs fast is irrelevant, which is the motivation
behind the introduction of stobj in ACL2.

An interesting aspect of the proof is the complexity of the induction scheme
required to show the equivalence of the pathfinder implementations. As can be
seen in Figure 2, the function linear-find-next-step-st contains a recursive
call with an argument that is the result returned by another recursive call. The
induction scheme has a similar structure. In the case of this proof, the ACL2
induction-generation heuristics fail to generate a good scheme, so we provide
one explicitly. (See induct-equiv in the accompanying ACL2 input.) The
induction scheme provides an induction hypothesis that reflects a single step of
the algorithm for both implementations of the algorithm, and also calculates
a result that can be used in the second recursive call in a manner consistent
with the operation of the algorithm. This is a rare instance where the value
calculated in a definition used to provide an induction scheme matters!

The function load-st translates a graph represented using lists as expected
by linear-find-path into a graph represented with a stobj as expected by
linear-find-st. The final lemma that shows the equivalence of the stobj
implementation and the original verified algorithm is

(implies
(and
(bounded-natp a (maxnode))
(bounded-natp b (maxnode))
(mygraphp g)
(stp st))
(equal
(car (linear-find-st a b (load-st g st)))
(linear-find-path a b g)))

We demonstrate the application of the correctness lemma on an example. Con-

sider the graph



Rockwell Collins

We find a path from vertex 0 to vertex 3 using both implementations. As
guaranteed by the lemma above, the paths are the same.

ACL2 !>(assign g *((0 2 3) (1) (201 23) (3 1))

((023 (1) (20123 (31))

ACL2 !> (mygraphp (@ g))

T

ACL2 !'>(let ((st (load-st (@ g) st))) (linear-find-st 0 3 st))
((0 2 3) <st>)

ACL2 !>(linear-find-path 0 3 (@ g))

(02 3)

ACL2 !>

5 An Unsupported Performance Optimization

But there’s a fly in the ointment. Function linear-find-next-step-st in
Figure 2 contains a computationally expensive test that does not affect the result
calculated by the function. The term (<= temp (number-unmarked st)) inthe
body of the function supports a proof that the previously-discussed measure
function measure-st is reduced on each recursive call of the function. This
proof allows us to admit the function in the ACL2 logic. The test is irrelevant
(except for justifying the function’s admissibility) because it always evaluates
to nil, since the recursive call of the function never increases the number of
marked vertices. Obviously, since we are concerned with execution speed, it is
desirable to eliminate this check. Unfortunately, the check is needed to prove
termination of the function and is therefore necessary in order to admit the
function into ACL2.

We prove that this check is irrelevant with the lemma in Figure 3. This lemma
states that when the guards to 1linear-find-next-step-st are satisfied, then
the function’s body can be replaced by a version that does not contain the
irrelevant check. Unfortunately, despite the proof of the lemma in Figure 3,
there is no ACL2-supported way to use the version of the algorithm without the
irrelevant check to justify termination of the function and thereby admit it to
the ACL2 logic.!

11t is possible in this case to replace the check with a more-efficient one, but it is not
possible to eliminate the check altogether. For example, since the number of recursive calls is
bounded by total number of edges in the graph, one more-efficient check would be to test that
a counter that is decremented on each recursive call is negative. If the counter is initialized
with the value of the total number of edges, then this test would always return nil. Of course,
while this check would allow admissability and would be more efficient, it would be similarly
irrelevant to the value produced by the algorithm.

Note also that while it seems that the simpler version of the function without the “irrelevant”
check terminates, the lemma of Figure 3 does not imply this.



Rockwell Collins

(defthm linear-find-next-step-st-simpler
(implies
(and
(graphp-st st)
(bounded-natp b (maxnode))
(numberlistp c¢ (maxnode)))
(equal
(linear-find-next-step-st c b st)
(if (endp c) st
(cond
((equal (marksi (car c) st) 1)
(linear-find-next-step-st (cdr c) b st))
((equal (car c) b)
(let ((st (update-status 0 st)))
(update-stack (myrev (cons b (stack st))) st)))
(t (let ((st (update-marksi (car c) 1 st)))
(let ((st (update-stack (cons (car c) (stack st)) st)))
(let ((st (linear-find-next-step-st (gi (car c) st) b st)))
(if (equal (status st) 0)
st
(let ((st (update-stack (cdr (stack st)) st)))
(linear-find-next-step-st (cdr c) b st)))))))))))
:rule-classes :definition)

Figure 3: Lemma justifying elimination of irrelevant check



Rockwell Collins

0.35
0.3 —

0.25 —

Time 0.2 —]
(CPU sec)

0.15 —
0.1 —

0.05 —

5 6
Graph size
(x100,000 edges)

Figure 4: Execution Time of linear-find-st

We take matters into our own hands and use the ACL2 “skip-proofs” command
to define 1inear-find-st, a version of the stobj-based pathfinder that omits the
irrelevant check. Lemma linear-find-next-step-st-simpler implies that
this version of the algorithm is consistent with the version we have verified, but
it is unsettling not to be able to use ACL2 to check our work here. The ACL2
developers are considering adding a “defbody” command to ACL2 that could
be used to define linear-find-st, requiring the user to justify it by proving a
lemma similar to linear-find-next-step-st-simpler. This example suggests
that this enhancement would be beneficial.

6 Benchmark Results

Figure 4 presents the result of benchmarking the stobj-based implementation
(omitting the check we have proved irrelevant) in the same way as the origi-
nal implementation’s benchmark presented in Figure 1. The new implementa-
tion executes faster — 0.28 seconds versus 78 seconds for the benchmark with
1,000,000 edges. It executes in linear-time, and is guaranteed correct by virtue
of the equivalence lemma presented here and the correctness lemma of [5].



Rockwell Collins

7

Conclusions

Our conclusion from writing hardware simulators is that ACL2 enhanced with
stobjs can express complex software that executes efficiently. The experience
documented in this paper suggests that software other than hardware simulators
can benefit from this technique, providing algorithm implementations that are
provably correct and that execute at their theoretical maximum efficiency. This
exercise also highlights a weakness in ACL2, which is the occasional need to
write unnecessarily complex functions.

References

[1]

[2]

[3]

[7]

Robert S. Boyer and J Strother Moore. Single-threaded objects in ACL2,

1999. http://www.cs.utexas.edu/users/moore.

David Greve, Matthew Wilding, and David Hardin. High-speed, analyz-
able simulators. In Computer-Aided Reasoning: ACL2 Case Studies. Kluwer
Academic Publishers, 2000. http://www.pobox.com/users/hokie/docs/-
hsas.ps.

David Hardin, David Greve, Matthew Wilding, and John Cowles. Single-
threaded formal processor models: Enabling proof and high-speed execu-
tion. Technical report, Rockwell Collins Advanced Technology Center, Cedar
Rapids, IA, 1999. http://www.pobox.com/users/hokie/docs/tr99.ps.

M. Kaufmann and J S. Moore. An industrial strength theorem prover for a
logic based on Common Lisp. IEEFE Transactions on Software Engineering,
23(4):203 — 213, April 1997.

J Strother Moore. An exercise in graph theory. In Computer-Aided Reason-
ing: ACL2 Case Studies. Kluwer Academic Publishers, 2000.

Natarajan Shankar. Efficiently executing PVS. Technical report, Computer
Science Laboratory, SRI International, Menlo Park, CA, 1999.

Matthew Wilding, David Greve, and David Hardin. Efficient simulation
of formal processor models. Formal Methods in System Design, to appear.
Draft TR available as http://pobox.com/users/hokie/docs/efm.ps.

10



