Consistently Adding Primitive
Recursive Definitions in ACL2

by

John Cowles
University of Wyoming



defpun

A macro for consistently introducing “partial
functions” into CAL2.

Described in Pete & J's paper, Partial
Functions in ACL2, at ACL2 Workshop
2000.

One of many cases handled by defpun is when
the “defining equation” is tail recursive.



Tail Recursion

et test, base, and st be arbitrary unary
functions.

There always is at least one ACL2 function f
that satisfies

(equal (f x)
(if (test x)
(base x)

(f (st x)))).



Tail Recursion Construction

Pete & J construct a tail recursive function £
in ACL2:

1. Define stn so that (stn x n) computes
(st® x).

2. Use defchoose to define a Skolem
(witnessing) function fch so that

(fch x) iS an n such that (test (stn x n))
holds, if such an n exists.

If no such n exists, then ACL2 knows
nothing about the value of (fch x).

If (test (stn x (fch x))) holds, then
(fch x) need not be the smallest n such
that (test (stn x n)) holds.



Tail Recursion Construction

3. Define a version of £, called fn, with an
extra ‘“clock-like” input parameter, n, that
ensures termination:

(defun fn (x n)
(declare (xargs :measure (nfix n)))
(if (or (zp n) (test x))
(base x)

(fn (st x) (1- n)))).

4. Finally define f:

(defun f (x)
(if (test (stn x (fch x)))
(fn x (fch x))
nil))

Any constant would do in place of nil in
this definition.



Tail Recursion Construction

(defun f (x)
(if (test (stn x (fch x)))
(fn x (fch x))
nil))

ACL2 verifies that this £ satisfies the tail
recursive equation

(equal (f x)
(if (test x)
(base x)

(f (st x)))).

4-b



Primitive Recursion

Let h be a binary function.

A function £ satisfying an equation of the
form

(equal (f x)
(if (test x)
(base x)

(h x (£ (st x)))))

is called primitive recursive.



Primitive Recursion

This definition of primitive recursive is
inspired by the primitive recursive definitions
studied in Theory of Computation courses:

For previously defined functions, k£ and h, on
the non-negative integers, define f by

f(Z,0) = k()
f(@t+1) h(t, f(Z, 1), T).

Here £ = x4, ..., zn.



Primitive Recursion

Extend Pete & J's tail recursive construction
to many, but not all, primitive recursive
defining equations.



Primitive Recursion

There are h's for which no ACL2 function f
satisfies the primitive recursive defining
equation:

(equal (f x)
(if (test x)
(base x)

(h x (f (st x))))).



Example

No ACL2 function g satisfies this primitive
recursive equation

(equal (g x)
(if (equal x 0)
nil
(cons nil (g (- x 1))))).

Here

e (test x) is (equal x 0),

e (base x) IS nil,

e (h x y) is (cons nil y), and

o (st x)is (- x 1).



Primitive Recursion

(equal (f x)
(if (test x)
(base x)

(h x (£ (st x))))).

A sufficient (but not necessary)
condition on n for the existence of f is
that nh have a right fixed point.

That is, there is some c such that
(h x c) = c.

10



Primitive Recursion Construction
Modify Pete & J’s tail recursion construction.

Construct a primitive recursive function £ in
ACL?2:

1. Define stn so that (stn x n) computes
(st™ x).

(Same as for tail recursion.)

2. Use defchoose to define a Skolem
(witnessing) function fch so that

(fch x) iS an n such that (test (stn x n))
holds, if such an n exists.

(Same as for tail recursion.)

11



Primitive Recursion Construction

3. Define a version of f, called fn, with an
extra ‘“clock-like” input parameter, n, that
ensures termination:

(defun fn (x n)
(declare (xargs :measure (nfix n)))
(if (or (zp n) (test x))
(base x)

(h x (fn (st x) (1- n))))).

4. Finally define f:
Here (h-fix) is a right fixed point for h.
(defun f (x)
(if (test (stn x (fch x)))

(fn x (fch x))
(h-fix)))

11-a



Primitive Recursion Construction

(defun f (x)
(if (test (stn x (fch x)))
(fn x (fch x))
(h-fix)))

ACL2 verifies that this £ satisfies the
primitive recursive equation

(equal (f x)
(if (test x)
(base x)

(h x (f (st x))))).

11-b



Example

A right fixed point for h is not necessary for
some primitive recursive definitions.

The ACL2 function fix satisfies this
primitive recursive equation

(equal (fix x)
(if (equal x 0)
o)
(+ 1 (fix (- x 1))))),

Here
e (test x) is (equal x 0),
e (base x) IS O,
e (h xy)is (+ 1 y) [no fixed point], and

o (st x)is (- x 1).

12



defpr

A macro for consistently introducing primitive
recursive equations into ACL?2.

In an encapsulate, carry out the Primitive
Recursion Construction:

e f iS constrained only by

(defthm
generic-primitive-recursive-f
(equal (f x)

(if (test x)
(base x)

(h x (f (st x)))))).

e h is constrained to have a right fixed
point, (h-fix).

e test, base, and st are unconstrained.

13



defpr

Given the required fixed point, the defpr
macro

e recognizes a primitive recursive definition,
and

e generates a functional instance of
generic-primitive-recursive-f to produce
a witness to the desired primitive
recursive equation.

14



Example

No ACL?2 function g satisfies this primitive
recursive equation

(equal (g x)
(if (equal x 0)
nil

(cons nil (g (- x 1))))).

The problem: cons has no right fixed point.

15



Example
The problem: cons has no right fixed point.
Provide a right fixed point by the following:

(defstub

cons-fix () => %)

(defun

cons$ (x y)
(if (equal y (cons-fix))
(cons-fix)

(cons x y)))

15-a



Example

(defpr
g (x)
(declare (xargs :fixpt (cons-fix)))
(if (equal x 0)
nil

(cons$ nil (g (- x 1)))))

produces an ACL?2 solution for g:

(equal (g x)
(if (equal x 0)
nil

(cons$ nil (g (- x 1)))))

Note use of XARGS keyword :fixpt to give the
required fixed point.

15-b



Example

Any fixed point will do.

Multiplication already has a right fixed point,
namely O:

(x x 0) = 0.

(defpr
fact (x)
(declare (xargs :fixpt 0))
(if (equal x 0)
1
(* x (fact (- x 1)))))

produces an ACL2 solution for fact:

(equal (fact x)
(if (equal x 0)
1
(* x (fact (- x 1)))))
16



Note: ACL2 accepts the definition that uses
the zero-test idiom (zp x) in place of the test

(equal x 0):
(defun
fact (x)
(if (zp x)

1
(* x (fact (- x 1)))))

16-1



Example

This succeeds: (a primitive recursive
definition)

(defpr
f (%)
(declare (xargs :fixpt 0))
(if (equal x 0)
1
(x (f (- x 1))
(f (- x 1))

This fails: (not a primitive recursive
definition)

(defpr
f1 (%)
(declare (xargs :fixpt 0))
(if (equal x 0)
1
(x (f1 (- x 1))
(f1 (+ x 1)))))

17



Example
with parameters.
(defpr

k (a b)
(declare (xargs :fixpt 0))
(if (equal b 0)

1

(*xab (ka(->b1)))

Note: On the non-negative integers

(k a b) = aP - b!

18



Example
Tail recursion is a special case.

The function, Id-2-2, defined by

(Id-2-2 x1 x2) = x2

IS used for h.
Any constant can be used for the fixed point.

(defpr
tail-f (x)
(declare (xargs :fixpt nil))
(if (tail-test x)
(tail-base x)
(Id-2-2 x (tail-f (tail-st x)))))

(defthm
tail-f-is-tail-recursive
(equal (tail-f x)
(if (tail-test x)
(tail-base x)
(tail-f (tail-st x)))))
19



Conclusion
Recursive equations of the form

(equal (f x)
(if (test x)
(base x)

(h x (£ (st x)))))

are satisfiable in ACL2’'s logic whenever h has
a right fixed point.

Proving h has a right fixed point ensures the
systematic construction of such a function f.

20



