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Abstract

In this paper, we present a proof in ACL2(r) of Taylor’s formula with remainder.
This important theorem allows a functionf with n+ 1 derivatives on the interval[a, b]
to be approximated with a Taylor series ofn terms centered ata. Moreover, the formula
allows the error in the approximation to be bounded by a term involving the(n+ 1)st
derivative off on (a, b).

The results in this paper were motivated in part by Jun Sawada’s work with ACL2(r)
verifying that the approximation used in the square root calculation of the IBM Power4
processor has the accuracy required. Sawada’s proof effort used a Taylor approximation
to the square root function. However, the support for such development in ACL2(r) is
lacking [17]. This paper shows how such results can be proved in ACL2(r). It also
shines a spotlight on some limitations of ACL2(r) that complicate the proof. Future
work will address these limitations.

1 Introduction

ACL2(r) is a modified version of ACL2 with support for irrational real and complex num-
bers [5]. The logical foundation for ACL2(r) is provided by non-standard analysis, initially
developed by Robinson and later axiomatized by Nelson [13, 15]. In essence, non-standard
analysis formalizes the intuitive arguments in calculus that appeal to infinitesimal quanti-
ties, giving a rigorous foundation to familiar calculus notions such as “infinitely small,” “in-
finitely close,” and “infinitely large.” There are several good introductions to non-standard
analysis, for example [1, 10, 11, 12, 14]. This paper assumes that the reader has some
familiarity with non-standard analysis, though it will introduce important notions from
non-standard analysis as they appear.

As a tool, ACL2(r) is sufficient to reason about foundational questions regarding the
irrationals. For example, it has been used to define the basic trigonometric functions, and
to prove various trigonometric identities. On a more foundational level, it has been used
to prove key theorems from elementary analysis, such as the intermediate value theorem,
mean value theorem, and the fundamental theorem of calculus [3, 4, 6].

However, the majorify of these proofs are at the foundational level. Lacking in ACL2(r)
are simple mechanisms for defining new irrational functions. In this paper, we formalize
one approach to these definitions, Taylor’s formula. In its incantation as a power series, this
formula was used explicitly to define the exponential function in ACL2(r) from scratch.
Here we use it to approximate a function whose firstn derivatives are known at a specific
point. This was motivated in part by Jun Sawada’s efforts at approximating the square root
function in ACL2(r) [17].
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The remainder of the paper is organized as follows. Section 2 presents a hand proof
of Taylor’s formula with remainder. This is followed in section 3 by a discussion of the
lemmas required by the proof. The focus will be on identifying which results can be reused
from previous ACL2(r) proofs and which results require new proof development. Section 4
describes an unexpected obstacle, an unfortunate combination of the limitations of func-
tional instantiation with pseudo-lambda expressions and with non-classical functions. The
main ACL2(r) proof of Taylor’s formula with remainder is given in section 5. Finally, some
conclusions and directions for future work are listed in section 6.

2 The Hand Proof

Given a functionf with n continuous derivatives on the interval[a, b] and its(n + 1)st
derivative defined on(a, b), Taylor’s formula with remainder provides a means for estimat-
ing f(x) for an arbitraryx ∈ [a, b] from the values off and its derivatives ata. Specifically,

f(x) = f(a) +
n∑
i=1

f (i)(a) · (x− a)i

i!
+
f (n+1)(β)
(n+ 1)!

(x− a)n+1,

whereβ is some point in the interval(a, b).
The proof, presented in [2] among others, follows the proof of the mean value theorem.

First, a special functionF is constructed, and then Rolle’s lemma is applied toF to find a
β for whichF ′(β) = 0. Taylor’s formula follows from solvingF ′(β) = 0 for f(x).

The functionF is defined differently for each pointx in [a, b]. In the following discus-
sion, letx be a specific, fixed point in[a, b]. DefineF over the interval[a, x] as follows:

F (t) = f(x)− f(t)−
n∑
i=1

f (i)(t) · (x− t)i

i!
+

(x− t)n+1

(n+ 1)!
A,

whereA is a constant that does not depend ont. The specific value ofA is chosen to
satisfy the criteria for Rolle’s lemma. Specifically, before Rolle’s lemma can be applied to
F on [a, x], we must show thatF is differentiable, and thatF (a) = F (x) = 0. Clearly
F (x) = 0, since all the(x − t)i terms vanish, leaving onlyf(x) − f(t) with t = x. To
ensureF (a) = 0, it is only necessary to setF (a) = 0 in the expression above and solve
for A. This gives

A = −

{
f(x)− f(a)−

n∑
i=1

f (i)(a) · (x− a)i

i!

}
(n+ 1)!

(x− a)n+1
.

Moreover,F is clearly differentiable since it is the sum of differentiable terms. Using
Rolle’s lemma, we can conclude that there is someβ ∈ (a, x) such thatF ′(β) = 0. But ob-

serve that the terms inF ′(t) neatly cancel out. That is, the derivative of
∑n
i=1

f(i)(t)·(x−t)i
i!

simplifies to−f ′(t) + f(n+1)(t)(x−t)n
n! . This means that

F ′(β) = 0 = −f
(n+1)(β)(x− β)n

n!
− (x− β)n

n!
A.

Sincex 6= β, the terms(x−β)n

n! can be factored and eliminated, leaving

0 = −f (n+1)(β)−A

= −f (n+1)(β) +

{
f(x)− f(a)−

n∑
i=1

f (i)(a) · (x− a)i

i!

}
(n+ 1)!

(x− a)n+1
.

Solving forf(x) in the formula above results in Taylor’s formula with remainder:

f(x) = f(a) +
n∑
i=1

f (i)(a) · (x− a)i

i!
+
f (n+1)(β)
(n+ 1)!

(x− a)n+1.
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3 The Foundational Lemmas

The proof outlined in section 2 uses several basic lemmas from analysis. In this section,
we try to identify these lemmas and make sure we have proved them before proceeding to
the main argument.

Clearly, the proof depends on Rolle’s lemma, which states that if a functionf is differ-
entiable on the interval[a, b], and if f(a) = f(b), then there is someβ ∈ [a, b] such that
f ′(β) = 0. Rolle’s lemma was proved in ACL2(r) in [4], and we will use that proof here.

The hand proof applies Rolle’s lemma to the following functionF on the range[a, x]:

F (t) = f(x)− f(t)−
n∑
i=1

f (i)(t) · (x− t)i

i!
+

(x− t)n+1

(n+ 1)!
A.

So we need to verify thatF satisfies the hypothesis of Rolle’s lemma. In particular, we
need to show thatF is differentiable on[a, x] and thatF (a) = F (x). The latter test is
easily verified, since we can choose the constant (with respect to t)A to forceF (a) =
F (x) = 0. ThatF is differentiable (with respect tot) follows from the fact that the first
n+ 1 derivatives off are defined on[a, b] and the rules governing derivatives of sums and
products. Also needed is the fact that(x − t)n is differentiable (with respect tot), which
can be established from the chain rule and the differentiability ofxn (with respect tox).
This suggests that we need to prove basic lemmas involving the derivatives of compositions
of functions.

The basic lemmas include(f · g)′ = fg′ + gf ′, (k · f)′ = k · f ′, (f ◦ g)′ = f ′ ◦ g · g′,
and(xn)′ = n · xn−1, the first of which is shown below. As in [4], we proceed by using
encapsulate to introduce generic differentiable functions, thef and g of the claim
above:

(encapsulate
((dc-fn1 (x) t)

(dc-fn2 (x) t)
(dc-fn1-deriv (x) t)
(dc-fn2-deriv (x) t)
(dc-fn-domain-p (x) t))

;; The function dc-fn-domain-p recognizes a standard
;; interval of reals

(local (defun dc-fn-domain-p (x) (realp x)))

(defthm dc-fn-domain-standard
(implies (dc-fn-domain-p x)

(dc-fn-domain-p (standard-part x))))

(defthm dc-fn-domain-real
(implies (dc-fn-domain-p x)

(realp x)))

(defthm dc-fn-domain-is-interval
(implies (and (dc-fn-domain-p l)

(dc-fn-domain-p h)
(realp x)
(<= l x)
(<= x h))

(dc-fn-domain-p x)))

3



;; fn1 and fn1-deriv are standard real-valued functions,
;; and fn1-deriv is the derivative of fn1

(local (defun dc-fn1 (x) x))
(local (defun dc-fn1-deriv (x) (declare (ignore x)) 1))

(defthm dc-fn1-standard
(implies (and (dc-fn-domain-p x)

(standard-numberp x))
(standard-numberp (dc-fn1 x))))

(defthm dc-fn1-deriv-standard
(implies (and (dc-fn-domain-p x)

(standard-numberp x))
(standard-numberp (dc-fn1-deriv x))))

(defthm dc-fn1-real
(implies (dc-fn-domain-p x)

(realp (dc-fn1 x))))

(defthm dc-fn1-deriv-real
(implies (dc-fn-domain-p x)

(realp (dc-fn1-deriv x))))

(defthm dc-fn1-derivative
(implies (and (standard-numberp x)

(dc-fn-domain-p x)
(dc-fn-domain-p y)
(i-close x y) (not (= x y)))

(i-close (/ (- (dc-fn1 x) (dc-fn1 y)) (- x y))
(dc-fn1-deriv x))))

;; similar definitions and constraints for fn2...

)

To prove that the derivative of the sums is the sum of the derivatives, we introduce functions
for the sums and their derivative:

(defun dc-fn1+fn2 (x)
(+ (dc-fn1 x) (dc-fn2 x)))

(defun dc-fn1+fn2-deriv (x)
(+ (dc-fn1-deriv x) (dc-fn2-deriv x)))

Supposex is standardandy is i-closeto x. Fromdc-fn1-derivative it follows that
(f1(x)−f1(y))

(x−y) is i-closeto f1
′(x). Similarly, (f2(x)−f2(y))

(x−y) is i-closeto f2
′(x). Adding these

two and simplifying yields the desired result. The key lemma is that whenx1 is i-closeto
x2 andy1 is i-closeto y2, x1 +y1 is i-closetox2 +y2. ACL2(r) proves this lemma quickly:

(defthm close-plus
(implies (and (i-close x1 x2)

(i-close y1 y2))
(i-close (+ x1 y1) (+ x2 y2)))

:hints (("Goal" :in-theory (enable i-close))))
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With this lemma in the ACL2(r) database, ACL2(r) can prove the main result:

(defthm dc-fn1+fn2-derivative
(implies (and (standard-numberp x)

(dc-fn-domain-p x)
(dc-fn-domain-p y)
(i-close x y) (not (= x y)))

(i-close (/ (- (dc-fn1+fn2 x)
(dc-fn1+fn2 y))

(- x y))
(dc-fn1+fn2-deriv x)))

:hints (("Goal" :
in-theory (disable close-plus)
:use (dc-fn1-derivative

dc-fn2-derivative
(:instance close-plus

(x1 (/ (- (dc-fn1 x)
(dc-fn1 y))

(- x y)))
(x2 (dc-fn1-deriv x))
(y1 (/ (- (dc-fn2 x) (dc-fn2 y))

(- x y)))
(y2 (dc-fn2-deriv x)))))))

The hints ensure that ACL2(r) has all the appropriate lemma instances to prove the result.
In the remainder of this paper, we will omit the specific hints, leaving only a reminder that
they are required.

Similar theorems take care of the rules(f · g)′ = fg′+ gf ′, (k · f)′ = k · f ′, (f ◦ g)′ =
f ′ ◦ g · g′, and(xn)′ = n · xn−1. Most of these theorems require substantially more work
to prove than thef + g case, but their proofs follow the established non-standard analysis
arguments.

4 An Unexpected Obstacle

A naive application of the lemmas described in section 3 runs into an unfortunate limitation
of ACL2(r). Consider the functionsG1(x) = x andG2(x) = x + a wherea is some
constant, or more specifically a value held fixed for a portion of the proof. We would like
to apply the lemmadc-fn1+fn2-derivative to show that the derivative of(G1 +
G2)(x) is 2:

(defun G1+G2 (x a)
(+ x x a))

(defun G1+G2-deriv (x)
(declare (ignore x))
2)

(defthm G1+G2-derivative
(implies (and (standard-numberp x)

(standard-numberp a)
(realp x)
(realp y)
(realp a)
(i-close x y) (not (= x y)))
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(i-close (/ (- (G1+G2 x a) (G1+G2 y a))
(- x y))

(G1+G2-deriv x)))
:hints (("Goal"

:use ((:functional-instance
dc-fn1+fn2-derivative
(dc-fn-domain-p realp)
(dc-fn1 (lambda (x) x))
(dc-fn2 (lambda (x) (+ x a)))
(dc-fn1+fn2 (lambda (x) (G1+G2 x a)))
(dc-fn1-deriv (lambda (x) 1))
(dc-fn2-deriv (lambda (x) 1))
(dc-fn1+fn2-deriv G1+G2-deriv))))))

This fails because ACL2(r) has to establish that the functional instance satisfies the con-
straints ondc-fn1 anddc-fn2 . In particular, one of the constraints is the following:

(defthm dc-fn2-real
(implies (dc-fn-domain-p x)

(realp (dc-fn2 x))))

When applied to the expression(+ x a) , this yields the goal

(implies (realp x) (realp (+ x a)))

which is false by itself. It is, however, true in the context of the hypotheses of the theorem,
which ensurea is a real number. There is an established way to deal with this hurdle in
ACL2, namely to use a term that preserves the constraint while simplifying to(+ x a)
when the hypothesis of the theorem are considered. This ACL2 trick is briefly mentioned
in [16]. In this case, an obvious candidate is the term(+ x (realfix a)) which
is equal to(+ x a) whena is real and which is real wheneverx is real, regardless of
whethera is also real or not.

However, this only delays the problem. Another constraint is the following:

(defthm dc-fn2-standard
(implies (and (dc-fn-domain-p x)

(standard-numberp x))
(standard-numberp (dc-fn2 x))))

This results in the following proof obligation:

(implies (and (realp x) (standard-numberp x))
(standard-numberp (+ x (realfix a))))

Again, this constraint is false. Moreover, attempting to fix it using the same trick as above
will fail. For example, suppose we instantiate dc-fn2 with(if (standard-numberp
a) (+ x (realfix a)) x) . ACL2(r) will not allow this instantiation, because the
term uses tht non-classical functionstandard-numberp , and ACL2(r) requires that
functions used in a functional instantiation be classical.

What we need is a way to add(standard-numberp a) to the hypothesis of the
instantiated version ofdc-fn2-standard . Smuggling the extra hypothesis into the
substitution ofdc-fn2 does not work, so we have little choice but to add it to the constraint
dc-fn2-standard itself. To do this, we definedc-fn2 as a constrained function of
two arguments, bothx anda. Throughout the definition, the extra argumenta is ignored.

An obvious drawback from this approach is that you have to know how many extra
variables to add a priori — in fact, we needed four extra variables for the proof of Taylor’s
formula. What this means, in practice, is that the book containing theencapsulate
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must be specialized: We had to create special versions of the bookscontinuity.lisp
andderivatives.lisp .

In general, the restrictions on functionally instantiating constrained functions with non-
classical terms are required to preserve soundness. However, it is possible that a less dra-
conian set of requirements will suffice, and we are currently investigating whether some
relaxation of the requirement can be permitted.

5 The Main Proof

We are now ready to present the proof in ACL2(r) of Taylor’s formula with remainder. The
first step is to constrain the functionf usingencapsulate as follows:

(encapsulate
((tay-fn (i n a x) t)

(tay-fn-deriv (i n a x) t)
(tay-domain-p (x) t)
(tay-n () t))

;; tay-domain-p recognizes a standard real interval

(local
(defun tay-domain-p (x)

(realp x)))

(defthm tay-domain-standard
(implies (tay-domain-p x)

(tay-domain-p (standard-part x))))

(defthm tay-domain-real
(implies (tay-domain-p x)

(realp x)))

(defthm tay-domain-is-interval
(implies (and (tay-domain-p l)

(tay-domain-p h)
(realp x)
(<= l x)
(<= x h))

(tay-domain-p x)))

;; tay-fn is a standard real function, depending
;; only on x

(local
(defun tay-fn (i n a x)

(declare (ignore i n a x))
0))

(defthm tay-fn-ignores-extra-args
(equal (tay-fn i n a x)

(tay-fn i2 n2 a2 x))
:rule-classes nil)
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(defthm tay-fn-standard
(implies (and (tay-domain-p x)

(standard-numberp i)
(standard-numberp n)
(standard-numberp a)
(standard-numberp x))

(standard-numberp (tay-fn i n a x))))

(defthm tay-fn-real
(implies (tay-domain-p x)

(realp (tay-fn i n a x))))

;; similarly, tay-fn-deriv is a standard real function,
;; depending only on i and x

...

;; tay-n is a standard natural number

(local
(defun tay-n ()

1))

(defthm natural-tay-n
(and (integerp (tay-n))

(<= 0 (tay-n)))
:rule-classes (:rewrite :type-prescription))

(defthm limited-tay-n
(i-limited (tay-n)))

;; tay-fn-deriv(i,x) is the ith derivative of tay-fn
;; at x, for 0<=i<=tay-n

(defthm tay-fn-deriv-0
(implies (tay-domain-p x)

(equal (tay-fn-deriv 0 n a x)
(tay-fn 0 n a x))))

(defthm tay-fn-deriv-chain
(implies (and (standard-numberp x)

(tay-domain-p x)
(tay-domain-p y)
(integerp i)
(<= 0 i)
(<= i (tay-n))
(i-close x y) (not (= x y)))

(i-close (/ (- (tay-fn-deriv i n a x)
(tay-fn-deriv i n a y))

(- x y))
(tay-fn-deriv (1+ i) n a x))))

)
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Notice the definition oftay-fn includes four parameters, though only one parameter con-
tributes to its value. This is in accordance with the discussion on section 4. The parameters
in question arex , which is the point where the function is evaluated, andi , n, anda,
which are standins for the current term in the approximation, the number of terms in the
approximation, and the point over which the Taylor series is expanded, respectively. The
constrainttay-fn-ignores-extra-args guarantees thattay-fn uses onlyx to
determine its value. However, this does not mean that other functions usingtay-fn , such
as the partial sums of the Taylor series, are bound by the same restriction. In effect, what
tay-fn-ignores-extra-args guarantees is that if the value oftay-fn of x is the
same in the first term of Taylor’s formula as in the last — which of course it should be,
sincetay-fn is really a function of only one variable.

Notice also that the constraints ontay-fn andtay-fn-deriv state explicitly that
the derivative oftay-fn is tay-fn-deriv . This is a stronger claim than the claim that
tay-fn is differentiable, as used in [4]. Recall that the bookscontinuity.lisp and
derivatives.lisp , where Rolle’s lemma is proved, had to be customized to include
the four extra variables (three of which correspond toi , n, anda in tay-fn ). For conve-
nience, we also changed the differentiability constraint inderivatives.lisp to match
the one given above; i.e., the modified books require that the derivative off be known.

From the definition oftay-fn andtay-fn-deriv , we can define Taylor’s formula
as follows:

(defun tay-term (i n a x)
(* (tay-fn-deriv i n a a)

(expt (- x a) i)
(/ (factorial i))))

(defun tay-sum (i n a x)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)

(integerp n)
(<= i n))

(+ (tay-term i n a x)
(tay-sum (1+ i) n a x))

0))

The functiontay-term returns the ith term in the Taylor expansion oftay-fn around
a, andtay-sum adds the terms fromi to n, inclusive.

Following the hand proof presented in 2, we now define the functiontay-rolle-fn ,
which is the intermediate function on which Rolle’s lemma is invoked:

(defun tay-extra (n a x)
(* (- (tay-fn 0 n a x) (tay-sum 0 n a x))

(/ (factorial (1+ n))
(expt (- x a) (1+ n)))))

(defun tay-rolle-fn (n a x b)
(+ (tay-fn 0 n x x)

(- (tay-sum 0 n b x))
(- (* (expt (- x b) (1+ n))

(/ (factorial (1+ n)))
(tay-extra n a x)))))

To satisfy that the requirement thatF (a) = F (b) in order to invoke Rolle’s lemma, it is
necessary to show that(tay-rolle-fn n a x a) is equal to(tay-rolle-fn n
a x x) . This is mostly straight-forward, typical of ACL2 efforts.
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More interesting is the claim that(tay-rolle-fn n a x b) is differentiable
with respect tob. More precisely, we need to show that(tay-rolle-fn n a x b)
has a specific derivative. The proof proceeds by using the lemmas about the derivatives of
function compositions, e.g.,f + g, f · g, andf ◦ g.

Consider the term(expt (- x b) n) . Its derivative with respect tob can be found
by applying the chain rule to the functionsf(b) = bn andg(b) = x− b:

(defun expt-x-b (i b x)
(expt (- x b) i))

(defun expt-x-b-deriv (i b x)
(- (* i (expt (- x b) (1- i)))))

(defthm expt-x-b-derivative
(implies (and (standard-numberp b)

(realp b)
(realp b0)
(i-close b b0)
(not (= b b0))
(realp xx)
(standard-numberp xx)
(integerp ii)
(<= 0 ii)
(<= ii (tay-n)))

(i-close (/ (- (expt-x-b ii b xx)
(expt-x-b ii b0 xx))

(- b b0))
(expt-x-b-deriv ii b xx)))

:hints (("Goal"
:use ((:instance

(:functional-instance
dc-fn1-o-fn2-derivative ...)

(x b)
(y b0))))

...))

Similar uses of the product and sum rules for derivatives yield the derivative oftay-sum :

(defun tay-term-deriv (i n a x)
(if (= i 0)

(tay-fn-deriv (1+ i) n a a)
(+ (* (tay-fn-deriv (1+ i) n a a)

(expt (- x a) i)
(/ (factorial i)))

(- (* (tay-fn-deriv i n a a)
(expt (- x a) (1- i))
(/ (factorial (1- i))))))))

(defun tay-sum-deriv (i n a x)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)

(integerp n)
(<= i n))

(+ (tay-term-deriv i n a x)
(tay-sum-deriv (1+ i) n a x))
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0))

(defthm tay-sum-derivative
(implies (and (standard-numberp a)

(standard-numberp xx)
(tay-domain-p a)
(tay-domain-p a0)
(i-close a a0)
(not (= a a0))
(tay-domain-p xx)
(integerp ii)
(integerp nn)
(<= 0 ii)
(<= ii nn)
(<= nn (tay-n)))

(i-close (/ (- (tay-sum ii nn a xx)
(tay-sum ii nn a0 xx))

(- a a0))
(tay-sum-deriv ii nn a xx)))

:hints ...)

Notice that the terms intay-term-deriv form a nearly telescopic series, with the case
i = 0 being the only exception. Hence, the terms in the sum cancel each other out, leaving
only the last term:

(defthm tay-sum-deriv->sum-deriv-simplified
(implies (and (integerp n)

(< 0 n))
(equal (tay-sum-deriv 0 n a x)

(* (tay-fn-deriv (1+ n) n a a)
(expt (- x a) n)
(/ (factorial n)))))

:instructions ...)

The remaining portion of the derivative oftay-rolle-fn can be computed as follows:

(defun expt/factorial*extra (n a x b)
(* (expt (- x b) (1+ n))

(/ (factorial (1+ n)))
(tay-extra n a x)))

(defun expt/factorial*extra-deriv (n a x b)
(if (= n -1)

0
(- (* (expt (- x b) n)

(/ (factorial n))
(tay-extra n a x)))))

(defun tay-rolle-fn-deriv (n a x b)
(+ (- (tay-sum-deriv 0 n b x))

(- (expt/factorial*extra-deriv n a x b))))

(defthm tay-rolle-fn-derivative
(implies (and (standard-numberp b)

(tay-domain-p b)
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(tay-domain-p b0)
(i-close b b0)
(not (= b b0))
(tay-domain-p aa)
(standard-numberp aa)
(tay-domain-p xx)
(standard-numberp xx)
(< aa xx)
(integerp nn)
(<= 0 nn)
(<= (1+ nn) (tay-n)))

(i-close (/ (- (tay-rolle-fn nn aa xx b)
(tay-rolle-fn nn aa xx b0))

(- b b0))
(tay-rolle-fn-deriv nn aa xx b)))

:hints ...)

We are now ready to apply Rolle’s lemma totay-rolle-fn . To do so, we need to
create the functiontay-rolle-fn-critical-point which selects the appropriate
critical point — i.e., a local maximum or minimum — fortay-rolle-fn on the range
[a, x]. This requires mimicking the appropriate definitions inderivatives.lisp and
continuity.lisp . The first function finds a point in[a, x] wheretay-rolle-fn
achieves its maximum:

(defun find-max-tay-rolle-fn-n (nn aa xx a max-x i n eps)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)

(integerp n)
(<= i n)
(realp a)
(realp eps)
(< 0 eps))

(if (> (tay-rolle-fn nn aa xx (+ a (* i eps)))
(tay-rolle-fn nn aa xx max-x))

(find-max-tay-rolle-fn-n nn aa xx a
(+ a (* i eps))
(1+ i) n eps)

(find-max-tay-rolle-fn-n nn aa xx a max-x
(1+ i) n eps))

max-x))

...

(defun-std find-max-tay-rolle-fn (nn aa xx a b)
(if (and (realp a)

(realp b)
(< a b))

(standard-part
(find-max-tay-rolle-fn-n nn aa xx a

a
0
(i-large-integer)
(/ (- b a)

(i-large-integer))))
0))
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This illustrates the classic way to define an irrational function in ACL2(r): First, an ap-
proximation function is defined recursively, and its properties proved with induction, and
second the non-standard definitional principle is used to define the irrational function im-
plicitly by giving its values only onstandardarguments — essentially, as the function to
which the approximation functions converge.

The definition offind-min-tay-rolle-fn which finds the point where the func-
tion tay-rolle-fn achieves its minimum is similar. With these two functions, it is
possible to find a critical point — i.e., a local minimum or maximum —insidethe range
(a, x) as follows:

(defun tay-rolle-fn-critical-point (nn aa xx a b)
(if (equal (tay-rolle-fn nn aa xx

(find-min-tay-rolle-fn
nn aa xx a b))

(tay-rolle-fn nn aa xx
(find-max-tay-rolle-fn

nn aa xx a b)))
(/ (+ a b) 2)

(if (equal (tay-rolle-fn nn aa xx
(find-min-tay-rolle-fn

nn aa xx a b))
(tay-rolle-fn nn aa xx a))

(find-max-tay-rolle-fn nn aa xx a b)
(find-min-tay-rolle-fn nn aa xx a b))))

And it is now possible to apply Rolle’s lemma totay-rolle-fn :

(defthm tay-rolle-fn-rolles-theorem
(implies (and (tay-domain-p a)

(tay-domain-p b)
(realp nn)
(realp aa)
(realp xx)
(= (tay-rolle-fn nn aa xx a)

(tay-rolle-fn nn aa xx b))
(< a b)
(tay-domain-p aa)
(tay-domain-p xx)
(< aa xx)
(integerp nn)
(<= 0 nn)
(<= (1+ nn) (tay-n)))

(and (tay-domain-p (tay-rolle-fn-critical-point
nn aa xx a b))

(< a (tay-rolle-fn-critical-point
nn aa xx a b))

(< (tay-rolle-fn-critical-point
nn aa xx a b)

b)
(equal (tay-rolle-fn-deriv

nn aa xx
(tay-rolle-fn-critical-point

nn aa xx a b))
0)))

:hints ...)
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This expression can be simplified considerably by removing the “extra” variablesnn , aa ,
andxx , which have served their purpose. The result is a more immediate translation of
Rolle’s lemma:

(defun tay-error-point (n a x)
(tay-rolle-fn-critical-point n a x a x))

(defthm tay-rolle-fn-rolles-theorem-corollary
(implies (and (tay-domain-p a)

(tay-domain-p x)
(< a x)
(integerp n)
(<= 0 n)
(<= (1+ n) (tay-n)))

(and (tay-domain-p (tay-error-point n a x))
(< a (tay-error-point n a x))
(< (tay-error-point n a x) x)
(equal (tay-rolle-fn-deriv

n a x (tay-error-point n a x))
0)))

:hints ...)

What remains is simply to solve the equation

(equal (tay-rolle-fn-deriv n a x (tay-error-point n a x))
0)

for (tay-fn x) . This involves only algebraic manipulations:

(defthm taylor-series-with-remainder
(implies (and (tay-domain-p a)

(tay-domain-p x)
(< a x)
(integerp n)
(< 0 n)
(<= (1+ n) (tay-n)))

(and (tay-domain-p (tay-error-point n a x))
(< a (tay-error-point n a x))
(< (tay-error-point n a x) x)
(equal (tay-fn 0 n a x)

(+ (tay-sum 0 n a x)
(* (tay-fn-deriv

(1+ n) n
(tay-error-point n a x)
(tay-error-point n a x))

(expt (- x a) (1+ n))
(/ (factorial (1+ n))))))))

:hints ...)

That is, we have shown that

f(x) = f(a) +
n∑
i=1

f (i)(a) · (x− a)i

i!
+
f (n+1)(β)
(n+ 1)!

(x− a)n+1,

for someβ ∈ (a, b).
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6 Conclusion

Taylor’s formula with remainder, as proved in 5, is sufficient to find approximations to ana-
lytic functions whose derivatives at a point are known. Such was the case in Sawada’s mo-
tivating application, where he provided an elegant abstraction of the derivatives of

√
x [17].

We hope that our work here will assist that verification effort.
The result can be extended in two obvious directions. First of all, as it stands the

approximation can only be used to find the values of the functionf for x greater thana.
This is typical of the way the proof is presented in analysis textbooks, with an appeal to
symmetry for the remainder of the proof. With a little bit of work, this restriction can be
removed from the theorem presented. Another direction will be to consider the infinite
Taylor series. We expect to have these results soon.

However, the methods used in the proof show some unfortunate limitations of ACL2(r).
Having to add “extra” variables to encapsulated functions is particularly distasteful and
cumbersome. This suggests that the rules for dealing with non-classical constraints be
relaxed somewhat. Whether that means allowing non-classical functions as functional in-
stances, considering onlystandardinstances of variables in pseudo-lambda expressions, or
an entirely different approach is currently being investigated.
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