A framework for VHDL combining theorem proving
and symbolic simulation

Philippe Georgelin, Dominique Borrione, Pierre Ostier
Laboratoire TIM A, Grenoble, France
{Philippe.Georgelin, Dominique.Borrione, Pierre.Ostier } @imag.fr

Abstract

We present the status of an on-going work aiming at introducing
symbolic simulation and theorem proving in a design flow that uses
conventional description and simulation languages. This paper focuses
on the formalization of the cycle simulation semantics of a synchronous
subset of VHDL, in the ACL2 logic. The model is executable, and the
results of its symbolic simulation can be proven equal to a specified ex-
pression. The ACL2 input is produced automatically from the VHDL
source, which relieves the designer from an error prone manual trans-
lation.

1 Introduction

In the context of high-level synthesis, the industrial designers of signal pro-
cessing circuits most often write the initial specification in an algorithmic
language (C and its various extensions, Matlab, Mathematica, etc) and ex-
tensively simulate the behavior of this initial description. Then a (most
often manual) synthesis step is performed, producing a Register Transfer
Level description of the intended hardware processing module, in a con-
ventional language (usually Verilog in England and the Americas, VHDL
being more popular in continental Europe); this second description in turn
is extensively simulated, and will eventually be the reference specification
that all available automatic design tools will take as initial input. In fact,
if modifications are made on the design, they are performed directly on the
RTL description, and never traced back to the initial specification.

There is a large semantic gap between the initial behavioral specifica-
tion, which computes some arithmetic function, and the RTL version of the
circuit, which already introduces clock cycles, and views the computation in
terms of a finite state machine. Popular automatic verification tools (model
checkers, equivalence checkers) are applicable to the RTL description and
below, but are inadequate to check that the RTL conforms to the initial

Acl2 Workshop 2002 2

specification.

The objective of our work is to develop methods and tools that can be
introduced in the design flow to help validate the initial behavioral descrip-
tion, and check that the RTL description obtained after a high-level synthesis
step conforms to it. Our approach consists in modeling the semantics of the
standard design description languages in a formally manipulable model, and
producing this model automatically, in order to relieve the designer from an
error prone manual translation.

This paper presents the current status of an on-going project, whose

long terms objective is to check the correctness of VHDL RTL descriptions
synthesized from behavioral specifications. To this aim, we defined the sim-
ulation semantics of a synthesizable VHDL subset in the ACL2 logic, and
built above the initial idea of J Moore [M0098] to perform the value simu-
lation, the symbolic simulation and the proof of functional equivalence on a
single semantic model of the initial VHDL text.
An early approach was presented in [BGROOb]. In that paper, we macro-
generated the ACL2 model from an intermediate format syntactically very
close to VHDL, in fact in one to one correspondence at the statement level.
That format was very readable, but the macro-generation did not scale well
when we added more and more VHDL primitives, and in particular hier-
archy. More precisely, the result of the macro-generation was directly fed
into the ACL2 system, and it was difficult to control and correct it. In
contrast, taking advantage of the 1/O facilities of ACL2, it is possible to
consider the intermediate format as a datum rather than a function, thus
easier to manipulate, and already exhibit some essential semantic features
of the description.

In the current approach, we no longer try to keep the VHDL syntax.
From the VHDL description, an industrial compiler, LVS, provides an ab-
stract syntax tree after lexical, syntactic and static semantic analysis. We
start from this “verified” internal format (where verified is here understood
in the VHDL acception of the word, meaning the set of static verifications
that a compiler can perform), to extract the characteristics of the model, in
the form of a set of property lists. The ACL2 model is then generated from
this new intermediate format. The details of our formalization method for
VHDL have been introduced in [VR00, BGR0Oa].

The earlier works could be considered a shallow embedding of VHDL in
ACL2, since we relied on LVS to detect syntactic and static semantic errors
(such as typing and scope of declared objects). Our current approach is even
less an embedding of VHDL: it rather consists in providing the “elaboration”
(again a VHDL word) of a VHDL description in view of its interpretation
with ACL2. This attitude is motivated by the complexity of VHDL, and
should be contrasted to the deep embedding of a simpler language such as

Acl2 Workshop 2002 3

DUAL-EVAL [Hun00] (where concurrent sequential processes are absent,
to the knowledge of the authors).

We implemented an interface on the ACL2 theorem prover, which offers
commands to perform:

1. the automatic translation between VHDL and the logic of ACL2.
2. the simulation of numeric values
3. the symbolic simulation, which uses the simplification engine of ACL2

4. the proof that a given model variable, after symbolic simulation, holds
a specified content.

This paper is structured as follows. Our model and the translator are
described in the next section. The third section discusses simulation and
symbolic simulation. The last section shows how to prove some properties.

2 Our formalization method

We model the behaviour of a VHDL description in the ACL2 input language.
We restrict ourselves to a standardized synthesis subset of VHDL [IEE00].
We add the simplifying restriction that all processes are synchronized on the
same clock edge; we can thus identify simulation cycle and clock cycle, and
need not represent the clock event explicitly.

2.1 The VHDL subset

This section adopts the VHDL terminology, and assumes the reader to be
familiar with the essential concepts of the language.

According to the standard, the synthesis subset excludes physical time
and non-discrete types. We further limit the subset to single clock syn-
chronization, without asynchronous statements (such as set and reset). We
recognize the primitive types bit, boolean, integer (scalars and vectors) as
well as enumerated user defined types.

A circuit is described by an entity, which declares its interface signals
(recognized directions are in and out). At most one of these signals is the
master clock. At least one architecture is associated with the entity, and
describes the behavior and/or the structure of the circuit. Inside the ar-
chitecture, concurrent processes may communicate through locally declared
signals; to guarantee determinism, “shared” variables are excluded from the
synthesizable subset, (i.e. variables may only be declared local to a process).

Acl2 Workshop 2002 4

User defined subtypes and pure functions are recognized, however we do not
accept resolved types for the moment. One or more instances of component
may be declared and interconnected in the architecture.

According to the VHDL definition, all the concurrent statements in
an architecture (signal assignments, assertions, procedure calls, blocks) are
translated to an equivalent process; we thus only consider processes here.
We further assume that all processes have been put in a normal form, with
a single wait statement written:
wait until clock-edge.

Inside a process, except for declarative statements, we shall only discuss
sequential signal assignments, variable assignments and if conditionals.

In this paper, we shall use the following toy description as running ex-
ample. The entity mysystem starts computing the factorial of input arg
when start is equal to ‘1’. The result is obtained after a varying number
of cycles of the master clock clk : the computed value is then assigned to
output result and output done is set to ‘1.

The behavioral architecture fact is described as two concurrent sequen-

tial processes: mult which models a multiplier, and doit which is the control
automaton.

entity mysystem is
port (input : in natural;
start,clk : in bit;
output : out natural;
done : out bit);
end mysystem;

-- purpose: factorial of n with 2 processes
architecture fact of mysystem is
signal opl,op2,resmult : natural;
signal startmult,endmult : bit;
begin

Multiplier : process -- process Multiplier
begin

wait until clk=’1";

if startmult=’1’ then

resmult <= opl*op2;

end if;

endmult <= startmult;
end process Multiplier;

Doit : process --control process
variable mystate : natural := O;
variable R,F : natural := 0;

begin

wait until clk=’1";
if mystate = O then

R := input; F :=1;

if start=’1’ then mystate := 1 ; end if;
else

if mystate = 1 then

Acl2 Workshop 2002 5

if R = 1 then
output <= F; done <= ’1’; mystate := O;
else
startmult <= ’17;
opl <= R; op2 <=F; mystate := 2;
end if;
else
if mystate = 2 then
if endmult = ’1’ then
F := resmult; R := R-1;
startmult <= ’0’; mystate := 1;
end if;
end if ;
end if;
end if;
end process Doit;
end architecture fact;

2.2 The memory state

An entity-architecture pair is formalized as an abstract state machine. A
state represents a snapshot of the system interface pins and memory ele-
ments, and the architecture function maps a state to the next state. We call
it the memory state.

The state is a list of values for all the signals and variables declared in the
description. In VHDIL,, a signal has one current value, and one “driver” per
process that assigns it. With the restrictions made above, it suffices to im-
plement a single “next” signal value for local and output signals. Therefore,
a signal is represented by two elements in the memory state. Input signals
cannot be modified in the architecture, only their current value is present
in the memory state. If Sig is a declared signal, in the machine state Sig
refers to its current value and Sig+ to its next value. A VHDL variable
has no driver, and assignments modify its current value; it is represented by
a single element in the memory state.

Unique naming is ensured by prefixing the identifiers of the declared objects
with the identifier of their enclosing block (process or component).

FErample of a memory state:

(arg start clk result done ;current interface signals

opl op2 resmult startmult endmult ;current local signals
result+ done+ ;next output interface signals

opl+ op2+ resmult+ startmult+ endmult+ ;next local signals
doit.mystate doit.r doit.f) ;variables declared in doit

To access and modify the state elements of the model by their name
rather than by their position in the list, the following functions are gener-
ated. All the functions are relative to a given entity-architecture pair; unique
naming is ensured by prefixing the function name with the concatenation of
the entity and architecture identifiers.

(defun mysystemfact-get-nth (var) ;returns the position of indicated variable

Acl2 Workshop 2002 6

Type declaration

(cond ((equal var 'arg) 0)
((equal var 'start) 1

)

(defun mysystemfact-getst (var st) ;gets the value of a state element by name
Type declaration
(nth (mysystemfact-get-nth var) st))

(defun mysystemfact-putst (new var st) ;modifies the value of a state element
Type declaration
(update-nth (mysystemfact-get-nth var) new st))

)

We use type declarations and guards optimizations to increase simulation
performances [WGH98]:

(declare (type (member arg
start opl op2 resmult startmult endmult
opl+ op2+ resmult+ startmult+ endmult+
doit.mystate doit.r doit.f res done res+ done-+)
var)
(xargs :guard t))

After the generation of the accessors to the individual elements of the
memory state, the recognizer predicate of the memory state is written. It
contains the type of all the memorizing elements : bit, integer, array, signed,
etc.

We guarantee that the memory state is well-founded after modifications.

Function architecture-entity-name-MAKE-STATE constructs the ini-
tial memory state, with all default values to variables and signals according
to their declaration.

Function arch-entity-name-UPDATE-ST updates the memory state at
the end of each simulation cycle, by copying the new value sig+ of each
internal and output signal to its current value sig.

(defun MYSYSTEMFACT-UPDATE-SIGNALS (st)

(seq st
(mysystemfact-putst ’opl (mysystemfact-getst ’opl+ st) st)
(mysystemfact-putst ’op2 (mysystemfact-getst ’op2+ st) st)
(mysystemfact-putst ’resmult (mysystemfact-getst ’resmult+ st) st)

(mysystemfact-putst ’done (mysystemfact-getst >done+ st) st)))

2.3 Functions that model the VHDL simulation cycle

Functions are generated for all the concurrent statements of the VHDL de-
scription: concurrent signal assignments and processes. All these functions
take a state as argument and produce a state as a result, actually construct
a new state. For example, to model an assignment to a state element, we
generate a new state where the new value replaces the old value.

Acl2 Workshop 2002 7

Within the function generated for a process, statements are sequential as in
the VHDL semantics. To this aim, as well as for efficiency reasons, we use
the macro “seq” which computes sequentially a “single-threaded” memory
state.

The translation of the MULT process is shown below.

(defun MYSYSTEMFACT-MULT-CYCLE (st)
(seq st
(if (= (mysystemfact-getst ’startmult st) 1)
(seq st
(mysystemfact-putst ’resmult+
(* (mysystemfact-getst ’opl st)
(mysystemfact-getst ’op2 st)) st))
st)
(mysystemfact-putst ’endmult+
(mysystemfact-getst ’startmult st) st)))

One simulation cycle is performed by the entity-arch-CYCLE function,
which calls all the process functions. The nesting order has no influence on
the resulting state, as no two processes assign the same state element.

Function entity-arch-SIMUL performs N simulation cycles, by repeti-
tively invoking the CYCLE function, and updating the current value of all
output and local signals with their new value at the end of the cycle.

(defun MYSYSTEMFACT-CYCLE (st)
(seq st (mysystemfact-mult-cycle st)
(mysystemfact-doit-cycle st)))

(defun MYSYSTEMFACT-SIMUL (n st)
(if (zp n)
st
(mysystemfact-simul (1- n)
(mysystemfact-cycle
(mysystemfact-update-signals st))))

2.4 ACL2 functions for components

Like processes, components are modeled by a transition function. This func-
tion passes the actual port values to and from the component state, and
performs one step of the component simulation cycle by calling the CYCLE
transition function of the entity-architecture pair bound to the component.

The memory state of the global architecture contains all memory states
of components. In Lisp, component memory states are lists inside the global
list.

Assume the architecture fact2 for mysystem is written in a more struc-
tural style, where mult is an internal component rather than a process.

Acl2 Workshop 2002 8

Compilation of VHDL files Generation of Acl2 files
disp
VHDL
source | g env
First i
Tranglator file
-thm.lisp

Figure 1: VHDL to ACL2 translators

--structural architecture with 2 components
architecture fact2 of mysystem is
signal opl,op2,resmult : natural;
signal startmult,endmult : bit;

component Multiplier
port (clk, startmult: in bit; opl,op2 : in natural;
endmult: out bit; resmult : out natural);
end component;

begin
Multi: Multiplier
port map (clk, startmult, opl,op2, endmult, resmult);

Doit : process --control process as before

end process Doit;
end architecture fact2;

In this case, the model state would be composed of:

(arg start

opl op2 resmult startmult endmult

opl+ op2+ resmult+ startmult+ endmult+

(clk startmult opl op2 endmult resmult endmult+ resmult+)
doit.mystate doit.r doit.f)

Models of architectures with components can be used for execution, sym-
bolic simulation and formal verification exactly as detailed in the next sec-
tions. Our memory state is compositional.

2.5 The translator between VHDL and ACL2

The translator is divided into two phases :

Acl2 Workshop 2002 9

.env
translator
- load definitions, theorems,
iﬁ{le(?ggt%r? utpLts generates new lemmas
with users user
USER @—&®|inteface
results of theorems

error messages

/ \si mulation results

Jdisp -thm.lisp Jog

Figure 2: The role of the user interface

e asemantic extraction, which transforms the VHDL description (.vhdl)
into a readable intermediate format, in the form of a list of its char-
acteristic features (file entity-arch.env). The set of possible features
is predefined, and each one is introduced by a key word. This for-
mat would fit with little modification other cycle-level simulation lan-
guages, such as e.g. a synthesizable subset of Verilog. (see Figure 1).

o A model generation, which takes the environment file and generates 2

files:

- A .lisp file which contains all the ACL2 formalization in terms of
functions.

- A -thm.lisp which contains some of intermediate lemmas used for
simplifying or for decomposing terms.

2.6 The user interface

A user interface (Figure 2) interacts with the top-level ACL2 read-eval-
print loop and the user. It contains the second translator to produce .lisp
and -thm.lisp. During executions, the tool produces a (or few) .log files,
theses files are for debugging, they inform the user about functions calls
and simplifications (log-output) or about proofs (log-proof). An example of
interaction with the user interface is presented in the next section.

Acl2 Workshop 2002 10

3 Numeric and symbolic simulation

3.1 Implementation of a model simulator

The generated model can be tested by entering numeric or symbolic values
as input.

An example of numeric simulation is performed below. Dots abbreviate
long lists of printed state values. The user inputs are captured after symbol
greater than ‘>’.

((SIMULATION MENU))

- Run numeric or symbolic simulation
- Print memory state

Edit memory state

- Reset memory state

B W
1

q:return to MAIN MENU

loaded : MYSYSTEM_FACT

Vhd1-ACL2>3

——————————————— MYSYSTEM FACT------—-=---=---=

input signals: ARG and START

generic parameter:

local signals: OP1, 0OP2, RESMULT, STARTMULT and ENDMULT
variables: MYSTATE, R and F

Enter values like :(varl vall var2 val2....)
Modify>(arg 12 start 1)

ARG 12

START 01

0P1 : 0

DONE+ (o]

((SIMULATION MENU))

- Run numeric or symbolic simulation
- Print memory state

Edit memory state

- Reset memory state

B W
1

q:return to MAIN MENU

loaded : "MYSYSTEM FACT"
Vhd1-ACL2>1

How many simulation cycle : 15
ARG t 12

START
0P1

Acl2 Workshop 2002 11

0P2 : 11880
RESMULT : 11880
STARTMULT 1
ENDMULT : 0
0P1+ : 8
0P2+ : 11880
RESMULT+ : 95040
STARTMULT+ 1
ENDMULT+ 1
MYSTATE 2
R : 8
F : 11880
RES : 0
DONE : 0
RES+ : 0
DONE+ 0

3.2 Symbolic simulation

For a first verification, the user can performs symbolic simulation. Symbolic
simulation is the execution of an ACL2 model with actual inputs replaced
by symbolic values. These values are mathematical variables (x,y ...), pos-
sibly restricted by conditions, representing arbitrary values. This method
produces symbolic expressions in the designs outputs which describe their
functional relation with the initial input values. Thus a single symbolic sim-
ulation run may stand for a very large or infinite number of test cases.

The routines provided by the expander generate theorems and simplify-
ing expressions, under given assumptions.

We use the ”expander.lisp” book written by Matt Kaufmann. The event
symsim simplifies given terms and hypothesis.

The syntax of symsim is the following :

(symsim call_of_function_to_be_simplified
(hypothesis

)

For example, to perform symbolic simulation of the factorial model:

ACL2 !'>(symsim (mysystemfact-simul 12 st)
((equal st (mysystemfact-make-state :arg q :start 1))
(integerp q) (>= q 0)))

Some arithmetic rewrites rules are used for rewriting algebraic expres-
sions (commutativity, associativity...). The user can disable them. So he
can control the form of outputs of symbolic simulation.

We produce two outputs files for debugging purposes when the symbolic
simulation fails:

Acl2 Workshop 2002 12

- output.log : This file is the redirction of the “standard-Channel-Output”,
the contents of which is, by default, send to the user in the ACIL2
prompt. We orient this channel into a file to debug more easily.

- proof.log : Same principle as above but associated to proof outputs.

More precisely, when we want perform symbolic simulation, we state nu-
meric or symbolic values, and start from an initial state, say st0. Assume we
have an entity-architecture pair called “entarch” and we perform a symbolic
simulation for 3 simulation cycle. The simplification heuristic expands the
call :

(entarch-simul 3 st0)

(using a rewrite rule) into :
(entarch-simul 2 (entarch-cycle (entarch-update-signals st0)))
And, so on :

(entarch-cycle (entarch-update-signals
(entarch-cycle (entarch-update-signals
(entarch-cycle (entarch-update-signals st0))))))

The simplification expands the definitions of entarch-cycle and
entarch-update-signals.

After the simplification, we have a succession of nth and update-nth.

At this level, the simplification heuristics of ACL2 2.6 associated with
the nu-rewrite algorithm, give a lot of characteristic properties of nth and
update-nth.

The characteristic properties of nth and update-nth are listed below,
where 1, and j are element indexes. Properties P1 and P2 describe the
access to an updated state. Property P3 indicates that only the last update
to a variable matters. Property P4 swaps updates to distinct variables.

P1: (nth i (update-nth i a st)) = a

P2: i#j — (nth i (update-nth j a st)) = (nth i st)

P3: (update-nth i a (update-nth i b st)) = (update-nth i a st))

P4: j<i — (update-nth i a (update-nth j b st)) =
(update-nth j b (update-nth i a st))

From the properties above, ACL2 generates rewrite rules that reduce a
nested expression (update-nth ¢y ag (put ¢; a; (... st))) to a unique
normal form where there is at most one update for each variable, and up-
dates are ordered by variable indexes. These properties also generate rules
to read the value of a variable from such expressions. Thus this form is
taken as the representation of states for proofs and symbolic simulation.

So, results of symbolic simulation are typically in the form :

Acl2 Workshop 2002 13

(update-nth 2
(binary-+ -1 q)
(update-nth
3

q
(update-nth
4
(binary-+ (unary-- q) (binary-* q q))
(update-nth
5
1
(update-nth
6
1
(update-nth
7
(binary-+ -1 q)

(update-nth 16 0
st)))))))))))))))

This form is sent by the prover to the user interface, which transforms it
and gives a more human-readable representation. We chose to display only
the modified signals and variables in the symbolic simulation results.

0P1 : (+ -3 q)
0P2 A+ (2@ (- (xqq) (- (x2qq) (xqqqg))
RESMULT
(+ (- (*x 6 q))

(* 2 q q)

(* 3 q4q)

(* 6 q q)

(- (*x qqq)

(- (*x2qqq)

(- (*x3qqq)

(* 9 qqq))

4 Proofs of properties

Symbolic simulation expressions can be very unreadable, user can disable
some runes (e.g commutativity-of-*, etc ...), but a better alternative is to
give the expected result as a theorem. The interface creates the theorem
and submits it to the prover.

The scheme is the following :

(thm
(implies (and (equal (nth 0 st) q)
(equal (nth 1 st) 1)
(integerp q) (> q 13))
(equal (mysystemfact-getst 'f Symbolic_result)
itshape Expected_result))

Acl2 Workshop 2002 14

‘hints ((" Goal" :in-theory (disable nth update-nth))))

((SYMBOLIC MENU))

1 - Print constraints
2 - Print Runes
3 - Remove Runes

4 - Prove something

q:return to SIMULATION MENU

loaded : "MYSYSTEM FACT"
Vhd1_ACL2>
4

Enter memory element to prove (or return): DOIT.F
Enter expression: (¥ q (- q 1) (- q 2) (- q 3))

Proof succeeded.

Congratulations ;-) Your property is True.

5 Conclusion

Our aim was to give the reader a flavor of our approach to apply theorem
proving techniques in a design flow based on conventional hardware descrip-
tion languages.

Our formalization method consists in defining the simulation semantics
of the appropriate design language in the ACL2 logic. We applied it to a
synthesizable VHDL subset, the principles would be similar with another
language such as Verilog. This formalization allows VHDIL descriptions to
be numerically and symbolically simulated by ACL2. Theorem proving tech-
niques are useful in simplifying symbolic expressions, and showing that the
content of designated state elements or outputs after a number of compu-
tation cycles is equal to the expected expression. We have implemented
a compiler for a subset of VHDL to the ACL2 logic to formally analyze
more realistic examples, such as submodules in a circuit which performs an
IVT Reconstruction Operator [HSB199] All those techniques are embedded
inside a unique framework.

Up to now, only a small subset of VHDL is fully formalized and handled
by the prototype. But it allows us to do some experiments and serves to
demonstrate a possible use of the theorem prover.

Acl2 Workshop 2002 15

Future extensions of this work include the proof of generic VHDL de-

scriptions,

and the proof of correctness of designs described using distinct

specification and implementation description languages.

References

[BGR00a]

[BGROOb]

[HSB+99]

[Hun00]

[IEE00]

[Mo098]

[VR00]

[WGHOS]

D. Borrione, P. Georgelin, and V. Rodrigues. Symbolic simulation
and verification of VHDL with ACL2. In International Confer-
ence on HDL (HDLCONF’2000), pages 167-182, San Jose, 2000.

D. Borrione, P. Georgelin, and V. Rodrigues. Using macros to
mimic VHDL. In M. Kaufmann, P. Manolios, and J S. Moore,
editors, Computer Aided Reasoning: ACL2 Case Studies, pages
167-183. Kluwer Academic Press, 2000.

M. Harrand, J. Sanchez, A. Bellon, J. Bulone, A. Tournier,
0. Deygas, J.C Herluison, D. Doise, and E. Berrebi. A single-chip
cif 30-hz, h261, h263, and h263+ video encoder/decoder with em-
bedded display controller. In IFEFE Journal of solid-state circuits,
Nov. 1999.

W. Hunt. The DE Language. In M. Kaufmann, P. Manolios,
and J S. Moore, editors, Computer Aided Reasoning: ACL2 Case
Studies, pages 151-166. Kluwer Academic Press, 2000.

IEEE Computer Society W.G. 1076.6. IFFFE Standard
for VHDL Register Transfer Level Synthesis, March 2000.
http://www.eda.org/siwg.

J S. Moore. Symbolic simulation: An ACL2 approach. In FM-
CAD’98, pages 334-350, 1998. LNCS 1522.

P. Georgelin V. Rodrigues, D. Borrione. An acl2 model of vhdl
for symbolic simulation and formal verification. XIIT Symposium
on Integrated Circuits and Systems Design (SBCCI’00), Manaus,
Amazonas, Brazil, September 18-22, 2000.

M. M. Wilding, D. A. Greve, and D. S. Hardin. Efficient sim-
ulation of formal processor models. Technical report, Advanced
Technology Center, Rockwell Collins Avionics and Communica-
tions, Cedar Rapids, TA 52498, 1998. http://pobox.com/users/-
hokie/docs/efm.ps.

