THIRD ACL2 WORKSHOP 2002

A Theory About First-Order
Terms in ACL2

Ruiz-Reina J.L., Alonso, J.A., Hidalgo, M.J., Martin, F.J.
Dpto. de Ciencias de la Computacién e Inteligencia Artificial

UNIVERSIDAD DE SEVILLA

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 1

Introduction

® We present an ACL2 library formalizing the
lattice-theoretic properties of first-order terms

e Our purpose is twofold:
e theoretical: prove algebraic properties of terms

e practical: verify some basic algorithms, like match-
ing, renaming, anti—unification and unification

e these algorithms can be executed in any compliant
Common Lisp
e Example:

e Definition and execution:

ACL2 !>(anti-unify ’(f (h (k w)) x (h y))
'(f (hw (gz) (h2z)))
(F (H3) 2 (H 1))

e Formal properties (greatest lower bound):

(defthm anti-unify-lower-bound
(and (subs (anti-unify t1 t2) t1)
(subs (anti-unify t1 t2) t2)))

(defthm anti-unify-greatest-lower-bound
(implies (and (subs term t1)
(subs term t2))
(subs term (anti-unify t1 t2))))

e Usefulness of this library:
e Already used in a formalization of term rewriting

e It could be used to study properties of symbolic
computation and automated deduction systems

Ruiz-Reina et al. CCIA ACL2 Workshop 2002

Representation of first-order terms

e Terms in prefix notation, using lists:
e f(x,9(y),e) is represented as (f x (g y) (e))

e Substitutions as association lists
e Useful view: every ACL2 object as a term

e Variables: (defun variable-p (x) (atom x))

e Non-variables: car and cdr, function symbol and
list of arguments, respectively

e Recursion for terms and lists of terms

(defun apply-subst (flg sigma term)
(if flg
(if (variable-p term)
(val term sigma)
(cons (car term)
(apply-subst nil sigma (cdr term))))
(if (endp term)
term
(cons (apply-subst t sigma (car term))
(apply-subst nil sigma (cdr term))))))

(defmacro instance (term sigma)
‘(apply-subst t ,sigma ,term))

e A typical example of theorem:
(defthm composition-of-substitutions-apply

(equal (apply-subst flg (composition sigmal sigma2) term)
(apply-subst flg sigmal (apply-subst flg sigma2 term))))

e Induction scheme very close to structural induction
e As a particular case, the theorem for terms

e No “type” conditions
Ruiz-Reina et al. Ccla ACL2 Workshop 2002 3

Matching and subsumption

e Subsumption: s <t if and only if do (matching
substitution) such that o(s) =1

e The subsumption relation in ACL2

e Definition of (match-mv t1 t2), returning two val-
ues (a boolean (subs) and a substitution (matching))

¢ The main theorems:

(defthm subs-soundness
(implies (subs t1 t2)
(equal (instance tl1 (matching t1 t2))

t2)))

(defthm subs-completeness
(implies (equal (instance tl1l sigma) t2)
(subs t1 t2)))

® Remark: in order to define a theoretical con-
cept, we defined and verified an executable al-
gorithm match-mv, very used in practice

e Definition and verification is inspired in a rule-
based definition of a unification algorithm (de-
scribed later)

¢ We have proved in ACL2 that the set of terms
is a well-founded lattice w.r.t. <

e Well founded quasi-ordering, with glb and lub

e We only use the above properties about subs and
matching, defining the subsumption relation

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 4

The subsumption quasi-ordering

e A well-founded quasi-ordering
(defthm subsumption-reflexive (subs tl1 t1))

(defthm subsumption-transitive
(implies (and (subs t1 t2) (subs t2 t3))
(subs t1 t3)))

(defthm subsumption-well-founded
(and (e0-ordinalp (subsumption-measure tl1))
(implies (and (subs t1 t2) (not (subs t2 t1)))
(e0-ord-< (subsumption-measure t1)
(subsumption-measure t2)))))

e Equivalent terms and renamings

(defun renamed (t1 t2)
(and (subs t1 t2) (subs t2 tl1)))

(defun renaming (sigma)
(and (variable-substitution sigma)
(no-duplicatesp (co-domain sigma))))

e Theorems:

(defthm renaming-implies-renamed
(implies (and (renaming sigma)
(subsetp (variables t term)
(domain sigma)))
(renamed (instance term sigma) term)))

(defthm renamed-implies-renaming
(let ((ren (normal-form-subst t (matching tl1 t2) t1)))
(implies (renamed t1 t2)
(and (renaming ren)
(equal (instance tl1l ren) t2)))))

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 5

A particular renaming

e For practical purposes, we defined a particular
renaming

e (number-rename term x y), which replaces numbers
for variables
e Its main property:

(defthm number-renamed-term-renamed-term
(implies (and (acl2-numberp x) (acl2-numberp y)
(not (= y 0)))
(renamed (number-rename term x y) term)))

e Standardization apart

(defthm number-rename-standardization-apart
(implies (and (acl2-numberp x1) (acl2-numberp x2)
(< x1 x2) (< y10) (<0 y2)
(disjointp
(variables t (number-rename tl1 x1 y1))
(variables t (number-rename t2 x2 y2))))

® The renamed equivalence and congruences

(defequiv renamed)
(defcong renamed iff (subs t1 t2) 1)

(defcong renamed iff (subs tl t2) 2)

e Congruence rewriting very useful in the mech-
anization of our proofs

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 6

Greatest lower bound of two terms

® We define an anti-unification algorithm

e Example:

ACL2 !'>(anti-unify ’(f (h y) x (h y)) °(f (g z) (g z) (g z)))

(F121)
e Auxiliary function (anti-unify-aux flg t1 t2 phi)
e By structural recursion, for terms and lists of terms

e The terms are traversed, collecting their common
structure

e The argument phi is built incrementally, associ-
ating numeric variables to corresponding pair of
terms with no common structure

e Properties of anti-unify (lower semilattice):

(defthm anti-unify-lower-bound
(and (subs (anti-unify t1 t2) t1)
(subs (anti-unify t1 t2) t2)))

(defthm anti-unify-greatest-lower-bound
(implies (and (subs term t1)
(subs term t2))
(subs term (anti-unify t1 t2))))

® Proof strategy:
e Incremental construction of phi: difficult to prove

e Compositional reasoning: we first verify a similar
function, where phi is assumed to be fired

e Under some conditions on phi, this function is
equal to anti-unify

Ruiz-Reina et al. CCIA ACL2 Workshop 2002

Unification of two terms (I)

® Definitions:

A substitution o is a solution of a system of equations S = {s; =
t1,.-,Sp ety tifo(s) = o(t;), 1 <i<n.

It is a most general solution if ¢ < ¢ for every solution ¢ of S (where
o < ¢ if there exists a substitution 7 such that § =y o o).

A (most general) unifier of s and ¢ is a (most general) solution of the
system {s ~ t}.

e Unification in ACL2

e We defined (mgu-mv tl1 t2), returning two values:
a boolean (unifiable) and a substitution (mgu)

¢ The main theorems:

(defthm mgu-completeness
(implies (equal (instance t1l sigma)
(instance t2 sigma))
(unifiable t1 t2)))

(defthm mgu-soundness
(implies (unifiable t1 t2)
(equal (instance t1 (mgu tl t2))
(instance t2 (mgu t1 t2)))))

(defthm mgu-most-general-unifier
(implies (equal (instance tl sigma)
(instance t2 sigma))
(subs-subst (mgu t1 t2) sigma)))

e Subsumption between substitutions: subs-sust (its
definition and properties are not trivial)

e The main proof effort of the library

Ruiz-Reina et al. CCIA ACL2 Workshop 2002

Unification of two terms (II)

e Rule—based specification of unification

Delete: {t~t}UR;T =, R; T
Decomp: {f(s1,...,80) = f(t1,-. ., tn) JURT =, {si=t1,...,sn =t} UR;T
Conflict: {f(s1,...,80) = g(t1,...,tm)}UR;T =, nil iff#gorn#m

Orient: {t~z}UR;T =, {z~t}UR;TifreXandt¢ X
Check: {z~t}UR;T =, nil ifz e V(t) and z # ¢
Eliminate: {z ~t}UR;T =, {z = t}R;{z~t}U{x — t}T

ifz e X and z ¢ V(¢)

® Definition in ACL2

e We define (transform-mm S T), applying one step of
transformation with respect to =,

e We define (solve-system S T bool), iteratively ap-
plying the transformation rules, until S is empty or
unsolvability is detected (termination is difficult).

e mgu-mv applies solve-system to (1ist (cons tl1 t2))

e Advantages of rule-based specifications:

e Proof clearly separated in two stages (invariants of
the transformation steps and termination)

e Logic and control separated (we do not need to
specify a concrete selection strategy)

e Nevertheless, some algorithms (anti—unification,
for example) are more naturally expressed by re-
cursion on the structure of the terms

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 9

Least upper bound of two terms

® Definition of (mg-instance t1 t2)
e Standardize apart t1 and t2

e Compute a most general unifier (if it exists) of the
renamed terms

e If it exists, apply the unifier to the renamed version
of t1. Otherwise, return nil

e Examples:

ACL2 !>(mg-instance ’(f x (h y)) ’(f (k u) w))
(F (K (H 1)) (H1))

ACL2 !>(mg-instance ’(f x (h x)) *(f (k u) w))
NIL

e Theorems:

(defthm common-instance-implies-mg-instance
(implies (and (subs tl1 term) (subs t2 term))
(mg-instance t1 t2)))

(defthm mg-instance-upper-bound
(implies (mg-instance t1 t2)
(and (subs t1 (mg-instance tl t2))
(subs t2 (mg-instance t1 t2)))))

(defthm mg-instance-least-upper-bound
(implies (and (subs t1 term) (subs t2 term))
(subs (mg-instance t1 t2) term)))

Ruiz-Reina et al. CCIA ACL2 Workshop 2002

10

Closure properties

e Terms in a given signature

e Although we have not needed “type conditions”,
we introduce them to state closure properties

e A general signature
(defstub signat (x *) => *)

e Well-formed terms in a signature

(defun term-s-p-aux (flg x)
(if flg
(if (atom x)
(eqlablep x)
(if (signat (car x) (len (cdr x)))
(term-s-p-aux nil (cdr x))
nil))
(if (atom x)
(equal x nil)
(and (term-s-p-aux t (car x))
(term-s-p-aux nil (cdr x))))))

(defmacro term-s-p (x) ‘(term-s-p-aux t ,x))

e The operations defined are closed w.r.t. the
terms in a given signature. For example:

(defthm anti-unify-term-s-p
(implies (and (term-s-p t1) (term-s-p t2))
(term-s-p (anti-unify t1 t2))))

® As a particular case, the closure properties are
used for guard verification

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 11

Conclusions

e All these properties prove that the set of first-
order terms in a given signature (plus an addi-
tional top term) is a well-founded lattice with
respect to subsumption:

lattice—of—terms

mg-instance subsumptlon —well-founded

unification

anti—unification

renamings

N~

subsumption—subst

unification—pattern \/

subsumption

T T~

matching

/

terms

|

basic

Ruiz-Reina et al.

Ccla

ACL2 Workshop 2002 12

Conclusions and future work

e Quantitative information:

Book Lines | Definitions | Theorems | Hints
basic 378 22 79 2
terms 770 93 76 12
matching 325 7 48 8
subsumption 295 13 29 18
subsumption-subst 327 16 38 13
renamings 578 9 64 25
subsumption-well-founded | 216 3 30 7
anti-unification 434 10 37 6
unification-pattern 808 7 105 33
unification 277 12 24 8
mg-instance 159 3 17 11
lattice-of-terms 148 17 20 5)
Total 4715 172 567 | 148

e Further work: to improve efficiency of the func-
tions defined, by using better data structures
to represent terms

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 13

