Using ACL2 Arrays to Formalize Matrix Algebra

Ruben Gamboa! John Cowles! Jeff Van Baalen!
Computer Science Department
University of Wyoming
{ruben,cowles,jvb}@cs.uwyo.edu

Abstract

An ACL2 book formalizing matrix algebra is described. The formal-
ization implements matrices with ACL2 two dimensional arrays.

The newly proposed ACL2 macro mbt? (“must be true”) helps to
cleanly separate logical considerations, in definitions, from concerns about
efficient execution. This use of mbt was suggested by an anonymous ref-
eree, whom we thank.

Matrix Algebra.

Let p and ¢ be positive integers. A p x ¢ matrix M is a rectangular array of
numbers, with p rows and ¢ columns,

mi1 mlq
M =
/rnp1 mpq

It is assumed that the reader already knows a great deal about the algebraic
operations on such matrices. Here is a brief summary.

The sum of two p X ¢ matrices is a p X ¢ matrix.

The product of a p X ¢ matrix and a g X r matrix is a p X r matrix.

The scalar product of a number and a p X ¢ matrix is a p X ¢ matrix.

The transpose of a p X ¢ matrix is a ¢ X p matrix.

e Matrix addition and multiplication are associative.

I This work supported by NASA grant NAG 2-1570.
?mbt is a proposed feature of ACL2 Version 2.8.

e Matrix addition is commutative, but matrix multiplication need not be
commutative.

e Matrix and scalar multiplication distribute over matrix addition.
e There is an unique p X ¢ zero matrix 0 such that M +0=M =0+ M.

e For square matrices, there is an unique p X p identity matrix I such that
M- I=M=1-M.

e Every p X ¢ matrix has an unique p X ¢ negative matrix such that M +
(-M)=0=(-M)+ M.

e Some square matrices, called nonsingular, have unique (multiplicative) in-
verses such that M - Mt =1=M"1- M.

e If My - Ms = 0, then neither M; nor M, need be 0.

ACL2 arrays.

ACL2 provides functions for accessing and updating both one and two dimen-
sional arrays, with applicative semantics, but good access time to the most
recently updated copy and usually constant update time.

;From the point of view of the applicative semantics, arrays are implemented
in the usual way one would represent “sparse” arrays. An array is simply an alist,
i.e. a list of pairs. One element of the alist is the “header,” which contains the
number of rows, d;, the number of columns, ds, and a default value. Aside from
the header, the other elements of the alist must each be of the form ((i . j) . val),
where ¢ and j are integers with 0 < ¢ < d; and 0 < j < ds, and val is an arbitrary
object. Formally speaking, to access the value indexed by the pair (i . j) in such
an alist, the alist is searched (with the function aref2) for the first pair whose
car matches the pair (i . j). If such a pair is found, then aref2 returns the cdr
of the pair; otherwise aref2 returns the default value stored in the header.

Fast array accesses are made possible by maintaining, behind the scenes, a
“real” Common Lisp array that may currently represent the given alist. In that
case, an array access can be very fast because the real array may be accessed
directly.

It would seem to be natural and straight forward to implement matrices
using ACL2 two dimensional arrays. However, there is a complication, that will
now be explained.

Ensuring closure of matrix multiplication.

Let d; be the number of rows and d» be the number of columns in an ACL2 two
dimensional array. The product, d; - dz, is required to fit into 32 bits so that

some compilers can lay down faster code. Thus,

di -dy < maximum-positive-32-bit-integer
— 231 -1
= 2,147,483,647.

This restriction on the size of d; - do means that matrices representable by
ACL2 arrays are not closed under matrix multiplication, even when the product
is mathematically defined. To illustrate, suppose d; - ds is required to be no
larger than 20; M; is a matrix with 5 rows and 2 columns; and M, is a matrix
with 2 rows and 5 columns. Then M; and M> would both be representable and
their product, M7 - M», would be mathematically defined, but not representable
(since 25 > 20).

Furthermore, when there are more than two matrices involved in a matrix
multiplication, the final product may be both mathematically defined and rep-
resentable by an ACL2 array, but yet not computable in ACL2. Let’s illustrate
by extending the example given above with M; and M>. Suppose My is a matrix
with 2 rows and 5 columns. Then the product (M- M;) - M2 is mathematically
defined, representable in ACL2, and computable in ACL2 (since both partial
products (Mo - My) and (My - M1) - M2 are representable in ACL2). But the
product My - (M; - M2) is mathematically defined, representable in ACL2, but
not computable in ACL2 (since the partial product (M - M) is not representable
in ACL2).

One way to prevent this last problem and also ensure closure for matrix
multiplication is to require that each of d; and ds be less than or equal to
46,340 which is the integer square root of 2,147,483,647, the maximum-positive-
32-bit-integer. Then the product of d; - dy is guaranteed to be less than the
maximum-positive-32-bit-integer. Furthermore, with this stronger restriction, if
the product M - --- - M, is both mathematically defined and representable in
ACL2, then, for any way of parenthesizing this product, all the partial products
are also mathematically defined and representable in ACL2.

Thus, for matrix multiplication, it is required that both the number of rows
and the number of columns be less than or equal to 46,340.

Comments on Matrix Operations in ACL2.

1. It’s useful to distinguish among three versions of “two dimensional arrays.”

Logical or “slow” array. This is an alist with the “shape” of a two
dimensional array. The alist meets a specified minimal number of
conditions, required by the applicative semantics, to be a two dimen-
sional array. In particular, there are no restrictions on the upper-
bounds of the number of rows and the number of columns.

“Fast” executable array. This is a logical array that meets the addi-
tional restriction required to ensure fast accessing and updating: The

product, of the number of rows and the number of columns, is less
than the maximum-positive-32-bit-integer.

Matrix. This is a fast array that meets an additional restriction required
to ensure that matrix products of fast arrays are always fast arrays:
Both the number of rows and the number of columns are no larger
than |/maximum-positive-32-bit-integer|.

. The test for matrix equality, (m-= M1 M2), is defined so that it is an
equivalence relation on the entire ACL2 universe. When at least one of M1
or M2 is not a logical array, then m-= coincides, by definition, with equal:

(defun
m-= (M1 M2)
"Determine if the matrices represented by the alists
M1 and M2 are equal (as matrices of numbers)."
(declare (xargs :guard (and (array2p ’$argl M1)
(array2p ’$arg2 M2))))
(if (mbt (and (alist2p ’$argl M1)
(alist2p ’$arg2 M2)))
(let ((diml (dimensions ’$argl M1))
(dim2 (dimensions ’$arg2 M2)))
(if (and (= (first diml)
(first dim2))
(= (second diml)
(second dim2)))
(m-=-row-1 (compress2 ’$argl M1)
(compress2 ’$arg2 M2)
(- (first diml) 1)
(- (second diml) 1))
nil))
(equal M1 M2))).

Note the use of the new macro mbt in this definition. Here is an explanation
of mbt as well as the functions used in this definition.

e (alist2p name A) returns t if A is a two dimensional logical array.
Otherwise it returns nil. The extra input argument name is included
only to be consistent with built-in ACL2 array manipulation func-
tions such as aref2, dimensions, and compress2 that include such
an argument to make ACL2’s “fast” implementation of arrays possi-
ble.

e (array2p name A) returns t if A is a two dimensional fast executable
ACL2 array. Otherwise it returns nil. The extra input argument
name is used by ACL2’s “fast” implementation of arrays.

o (aref2 name A i j) where A is a two dimensional array and i and
j are legal indices into A. This function returns the value associated
with (i . j) in A, or else the default value of the alist.

This function executes in nearly constant time if A has been stored,
behind the scenes, in a Common Lisp array. When it has not, aref2
must do a linear search through the alist A.

o (compress2 name A) where A is a two dimensional array. Logically,

this function removes irrelevant pairs from the alist A. The function
returns a new alist, A’, equivalent to A under aref2. A’ may be
shorter than A and the non-irrelevant pairs may occur in a different
order in A’ than in A.
This function plays an important role in the efficient implementation
of aref2. In addition to creating the new alist A’, compress2 al-
locates and stores (a representation of) the new alist in a Common
Lisp array.

e (dimensions name A) where A is a two dimensional array. This func-
tion returns the dimensions list of the array alist. That list contains
at least two elements, the first is the positive integer number of rows
and the second is the positive integer number of columns.

e mbt (“must be true”) is a proposed new (starting with Version 2.8)

ACL2 macro that can be used to replace an expensive Boolean test, in
a :logic mode function definition, with t during execution, provided
that the Boolean test must be true whenever the function’s guard is
true.
Semantically, (mbt x) equals x. However, in raw Lisp (mbt x) ig-
nores x entirely, and macro-expands to t. ACL2’s guard verification
mechanism ensures that the raw Lisp code is only evaluated when ap-
propriate, since a guard proof obligation (equal x t) is generated.
In the above definition of m-=, since the predicate alist2p is implied
by array2p, the mbt can be used to replace the alist2p tests with
t during execution.

o (m-=-row-1 A1 A2 m n) returnstifforalli, jsuchthat0<i<m
and 0 < j <m,

(fix (aref2 name A1 i j)) = (fix (aref2 name A2 i j)).
Otherwise it returns nil.

3. The test for matrix equality, (m-= M1 M2), is a congruence relation with
respect to the matrix operations of transpose, unary minus, scalar multi-
plication, addition, and multiplication.

4. The matrix operations of addition, (m-+ M1 M2), and multiplication, (m-*
M1 M2), are defined to be operations on the entire ACL2 universe. When
at least one of M1 or M2 is not a logical array, then m-+ coincides, by
definition, with + and m-* coincides, by definition, with *.

This allows some matrix equalities to be stated without any hypotheses
restricting the operands to be arrays. For example, m-+ and m-* satisfy
these hypotheses-free versions of distributivity

(m-= (m-* M1 (m—-+ M2 M3))
(m-+ (m-* M1 M2)
(m-* M1 M3)))

(m-= (m-* (m—-+ M1 M2) M3)
(m-+ (m-* M1 M3)
(m-* M2 M3))).

This also allows some matrix equalities to be stated in terms of equal in
place of m-=. For example, m-+ satisfies this version of commutativity

(equal (m-+ M1 M2)
(m-+ M2 M1))

as well as this weaker version

(m-= (m-+ M1 M2)
(m-+ M2 M1)).

Similar comments apply to the associativity of m-+ and m-x*.

5. Determinants and multiplicative matrix inverses are computed using row
and column operations. The determinant is used to determine if a square
matrix is singular or nonsingular. ACL2 proofs are still required for the
following

e For square matrices, whenever the determinant is not 0, then m-/
computes the two-sided multiplicative inverse.
e Whenever the determinant is 0 then there is no inverse.
e Non-square matrices do not have two-sided inverses.
Meanwhile, we use this temporary definition of a nonsingular matrix: A

matrix is nonsingular if and only if it is a square matrix and m-/ does, in
fact, compute a two-sided multiplicative inverse.

6. Closure properties of matrix operations:

e ACL2 logical arrays, fast arrays, and matrices are all closed under
the operations of transpose, unary-minus, and scalar multiplication.

o ACL2 logical arrays, fast arrays, and matrices are all closed under the
operations of matrix sum and matrix multiplicative inverse, whenever
the results of these operations exist mathematically.

o ACL2 logical arrays and matrices, but not ACL2 fast arrays, are
closed under matrix multiplication, whenever this operation produces
a mathematical result.

Summary: Matrix Operations Implemented in ACL2.

This summary is based on the ACL2 Matrix Algebra Book found in the file
matalg.lisp.

Recognizers.

Boolean test for a “slow” logical array. (alist2p name A)

e Determine if A is an alist, meeting a minimal number of condi-
tions, required by the applicative semantics, to be a two dimen-
sional array.

e Enforce no restrictions on the upper-bounds of the number of
rows and the number of columns.
Boolean test for a “fast” executable array. (array2p name A)

e Determine if A is an ACL2 two dimensional array.

e Enforce the restriction (required to ensure fast accessing and up-
dating) that the product, of the number of rows and the number
of columns, is less than the maximum-positive-32-bit-integer.

Boolean test for a matrix. (matrixp m n A)

e Determine if A is a m X n matrix.

e Enforce an restriction ensuring that matrix products of fast ar-
rays are always fast arrays:

mn < [y/maximum-positive-32-bit-integer]
— 46,340

Number of rows. (r M)

e Return the number of rows in the matrix M.
Number of columns. (c M)

e Return the number of columns in the matrix M.
Matrix equality. (m-= M1 M2)

e Determine if the matrices represented by the alists M1 and M2 are
equal (as matrices of numbers).

e m-=is an equivalence relation.

Zero matrix. (m-0 m n)

e Return an alist representing the m X n matrix whose elements are all
equal to 0.

e Closure of m-0

(implies (and (integerp m) (> m 0)
(integerp n)(> n 0))
(alist2p name (m-0 m n)))

(implies (and (symbolp name)
(integerp m) (> m 0)
(integerp n) (> n 0)
(< (* m n)
MAXIMUM-POSITIVE-32-BIT-INTEGER))
(array2p name (m-0 m n)))

(implies
(and (integerp m) (> m 0)
(integerp n) (> n 0)
(<=
m
INT-SQRT-MAXIMUM-POSITIVE-32-BIT-INTEGER)
(k=
n
INT-SQRT-MAXIMUM-POSITIVE-32-BIT-INTEGER))
(matrixp mn (m-0 m n)))

Identity matrix. (m-1 n)

e Return an alist representing the n x n identity matrix.

e Closure of m-1

(implies (and (integerp n)(> n 0))
(alist2p name (m-1 n)))

(implies (and (symbolp name)
(integerp n) (> n 0)
(< (*x n n)
MAXIMUM-POSITIVE-32-BIT-INTEGER))
(array2p name (m-1 n)))

(implies
(and (integerp n)(> n 0)
(<=
n
INT-SQRT-MAXIMUM-POSITIVE-32-BIT-INTEGER))
(matrixp n n (m-1 n)))

Transpose of a matrix. (m-trans M)
e Return an alist representing the transpose of the matrix represented
by the alist M.
e idempotency of m-trans
(implies (alist2p name M)

(m-= (m-trans (m-trans M))

M))

e m-=is a congruence for m-trans

(implies (m-= M1 M2)
(m-= (m-trans M1)
(m-trans M2)))

e m-trans of m-0

(implies (and (integerp m)(> m 0)
(integerp n) (> n 0))
(m-= (m-trans (m-0 m n))

(m-0 n m)))

e m-trans of m-1

(implies (and (integerp n)(> n 0))
(m-= (m-trans (m-1 n))

(m-1 n)))

o Closure of m-trans

(implies (alist2p name M)
(alist2p name (m-trans M)))

(implies (array2p name M)
(array2p name (m-trans M)))

(implies (matrixp m n X)
(matrixp n m (m-trans X)))

Unary minus of a matrix. (m-- M)
e Return an alist representing the unary minus of the matrix repre-
sented by the alist M.

e idempotency of m--

(implies (alist2p name M)
(m-= (m-- (m-- M)
M)

e m-=is a congruence for m--

(implies (m-= M1 M2)
(m-= (m-- M1)
(m-- M2)))

e m— of m-0

(implies (and (integerp m)(> m 0)
(integerp n)(> n 0))
(m-= (m—- (m-0 m n))
(m-0 m n)))

e m-trans of m—-

(implies (alist2p name M)
(m-= (m-trans (m-- M))
(m-- (m—trans M))))

e Closure of m--
(implies (alist2p name M)

(alist2p name (m-- M)))

(implies (array2p name M)
(array2p name (M-- M)))

(implies (matrixp m n X)
(matrixp m n (m—- X)))

10

Scalar multiplication of a matrix. (s-*x a M)
e Return an alist representing the multiplication of the scalar a times
the matrix represented by the alist M.

e m—= is a congruence for s-*

(implies (m-= M1 M2)
(m-= (s-* a M1)
(s-* a M2)))

e associate scalars left for s-*

(implies (alist2p name M)
(m-= (s-* al (s—* a2 M))
(s=x (x al a2) M)))

e multiply by scalar 0

(implies (alist2p name M)
(m-= (s-* 0 M)
(m-0 (r M) (c M))))

e multiply by scalar 1

(implies (alist2p name M)
(m-= (s-* 1 M)
M)

e multiply by scalar —1

(implies (alist2p name M)
(m-= (s-* -1 M)
(m-- M)))

e multiply m-0 by scalar

(implies (and (integerp m) (> m 0)
(integerp n) (> n 0))
(m-= (s-* a (m-0 m n))(m-0 m n)))

e m-trans of s—x*

(implies (alist2p name M)
(m-= (m-trans (s-* s M))
(s-* s (m—trans M))))

11

e s—x of m--

(implies (alist2p name M)
(m-= (s-* a (m-- M))
(m-- (s-* a M))))

o Closure of s-*

(implies (alist2p name M)
(alist2p name (s-* a M)))

(implies (array2p name M)
(array2p name (s-* a M)))

(implies (matrixp m n X)
(matrixp m n (s-* a X)))

Matrix sum. (m-+ M1 M2)

e Return an alist representing the matrix sum of the matrices repre-
sented by the alists M1 and M2.

e m-= is a congruence for m-+

(implies (m-= M1 M2)
(equal (m-+ M1 M3)
(m-+ M2 M3)))

(implies (m-= M2 M3)
(equal (m-+ M1 M2)
(m-+ M1 M3)))

e commutativity of m—+

(equal (m-+ M1 M2)
(m-+ M2 M1))

(equal (m-+ X Y Z)
(m-+ Y X Z2))

e associativity of m-+

(equal (m-+ (m-+ M1 M2) M3)
(m-+ M1 M2 M3))

12

e m—-+ unicity of m-0

(implies (alist2p name M)
(m-= (m—+ M (-0 (r M)(c M)))
M)

(implies (alist2p name M)
(m-= (m-+ (m-0 (r M)(c M)) M)
M)

e m—+ inverse of m--

(implies (alist2p name M)
(m-= (m-+ (m-- M) M)
(m-0 (r M) (c M))))

(implies (alist2p name M)
(m-= (m-+ M (m-—- M))
(m-0 (r M) (c M))))

(implies (and (alist2p name X)
(alist2p name Y)
(equal (r X)(r Y))
(equal (c XD (c V)
(m-= (m-+ X (m-- X) Y)
)

(implies (and (alist2p name X)
(alist2p name Y)
(equal (r X)(r Y))
(equal (c XD (c V)
(m-= (m-+ (m-- X) X Y)
Y))

e distribute s-* over +

(implies (alist2p name M)
(m-= (s-* (+ a b) M)
(m-+ (s—* a M)(s-* bm))))

13

distribute s-* over m-+

(implies (and

(m-

m-trans of m-+

(implies (and

(m-

(alist2p name M1)

(alist2p name M2)

(equal (r M1) (r M2))

(equal (c M1)(c M2)))

(s=* a (m-+ M1 M2))

(m-+ (s-* a M1)(s-*x a M2))))

(alist2p name M1)

(alist2p name M2)

(equal (r M1) (r M2))

(equal (c M1) (c M2)))

(m-trans (m—+ M1 M2))

(m-+ (m-trans M1) (m-trans M2))))

distribute m-- over m—+

(implies (and

(m-=

Closure of m-+

(implies (and

(alist2p name M1)
(alist2p name M2)

(equal (r M1)(r M2))
(equal (c M1)(c M2)))
(m—-- (m—+ M1 M2))

(m-+ (m-- M1) (m—- M2))))

(alist2p name M1)
(alist2p name M2)
(equal (r M1) (r M2))
(equal (c M1)(c M2)))

(alist2p name (m-+ M1 M2)))

(implies (and

(array2p name M1)
(array2p name M2)
(equal (r M1) (r M2))
(equal (c M1)(c M2)))

(array2p name (m-+ M1 M2)))

(implies (and

(matrixp m n X1)
(matrixp m n X2))

(matrixp m n (m-+ X1 X2)))

14

Matrix product. (m—-* M1 M2)

e Return an alist representing the matrix product of the matrices rep-
resented by the alists M1 and M2.

e m—= is a congruence for M-*

(implies (m-= M1 M2)
(equal (m-* M1 M3)
(m-* M2 M3)))

(implies (m-= M2 M3)
(equal (m-* M1 M2)
(m-* M1 M3)))

e nullity of m-0 for m-*

(implies (and (alist2p name M1)
(integerp m)
(> m 0))
(m-= (m-* (m-0 m (r M1))
M1)
(m-0 m (c M1))))

(implies (and (alist2p name M1)
(integerp p)
G p 0))
(m-= (m-* M1
(m-0 (c M1) p))
(m-0 (r M1) p)))

e unity of m-1 for m—*

(implies (alist2p name M1)
(m-= (m-* (m-1 (r M1))
M1)
M1))

(implies (alist2p name M1)
(m-= (m-* M1
(m-1 (c M1)))
M1))

15

e associativity of m-*

(equal (m-* (m-* M1 M2) M3)
(m-* M1 M2 M3))

e distribute m-* over m-+

(m-= (m-* M1 (m-+ M2 M3))
(m-+ (m—* M1 M2)
(m-* M1 M3)))

(m-= (m-* (m-+ M1 M2) M3)
(m-+ (m-* M1 M3)
(m-* M2 M3)))

e s—* and m—*

(implies (and (alist2p name M1)
(alist2p name M2)
(equal (c M1) (r M2)))
(m-= (m-* (s-* a M1) M2)
(s=* a (m-* M1 M2))))

(implies (and (alist2p name M1)
(alist2p name M2)
(equal (c M1) (r M2)))
(m-= (m-* M1 (s—* a M2))
(s—* a (m—-* M1 M2))))

e m-trans of m-x*

(implies (and (alist2p name M1)
(alist2p name M2)
(equal (c M1) (r M2)))
(m-= (m-trans (m-* M1 M2))
(m-* (m-trans M2) (m-trans M1))))

e m—* and m—-

(implies (and (alist2p name M1)
(alist2p name M2)
(equal (c M1)(r M2)))
(m-= (m-* (m—-- M1) M2)
(m-- (m-* M1 M2))))

16

(implies (and (alist2p name M1)
(alist2p name M2)
(equal (c M1) (r M2)))
(m-= (m-* M1 (m—— M2))
(m—- (m-* M1 M2))))

Closure of m-x*

(implies (and (alist2p name M1)
(alist2p name M2)

(equal (c M1) (r M2)))

(alist2p name (m-* M1 M2)))

(implies (and (array2p name M1)
(array2p name M2)
(equal (c M1) (r M2))
(< (* (r MD) (c M2))
MAXIMUM-POSITIVE-32-BIT-INTEGER))
(array2p name (m-* M1 M2)))

(implies (and (matrixp m n X1)
(matrixp n p X2))
(matrixp m p (m—* X1 X2)))

Matrix inverse and determinant. (m-/ M) and (determinant M)

Return an alist representing the matrix inverse of the matrix repre-
sented by the alist M. Also compute the determinant of M.

Row and column operations are used to compute the inverse and
determinant.

The determinant is used to determine if a square matrix is singular
or nonsingular.

ACL2 Proofs still required:

— m-= is a congruence for m-/ and determinant.

— For square matrices, whenever the determinant is not 0, then
m-/ computes the two-sided multiplicative inverse.

— Whenever the determinant is 0 then there is no inverse.

Non-square matrices do not have two-sided inverses.

17

e Meanwhile we use this temporary definition of singular

(defun
m-singularp (M)
(declare (xargs :guard (array2p ’$c M)
:verify-guards nil))
(not (and (mbt (alist2p ’$c M))
(= (r W (c M)
(m-= (m-* M (m-/ M))
(m-1 (r M)))
(m-= (m-* (m-/ M) M)
(m-1 (r M))))))

e m-/ of m—*

(implies (and (not (m-singularp M1))
(not (m-singularp M2))
(not (m-singularp (m-* M1 M2)))
(equal (c M1) (r M2)))
(m-= (m-/ (m-* M1 M2))
(m-* (m-/ M2) (m-/ M1))))

e Closure of m-/

(implies (and (alist2p name M)
(equal (r M) (c M)))
(alist2p name (m-/ M)))

(implies (and (array2p name M)
(equal (r M) (c M)))
(array2p name (m-/ M)))

(implies (and (matrixp (r M) (c M) M)
(equal (r M) (c M)))
(matrixp (r M) (c M) (m-/ M)))

18

