Polymorphlsm n ACL2

s T S VO
Ruben GambOa

University of Wyoming

ACL2 Workshop 2003

Motivation

' " o : > ooty e R L -
L e B T e St haet S I R L T

o Preaching to choir: ACL2 is a terrific
theorem prover that has been used
successfully in several verification efforts

o We are interested in verifying software

o Objects are today’s dominant software
metaphor

o ACL2 does not support objects (yet)

Supportmg Objects

RN IR b St Tt R P Pt A Pt ST LT v B PN a5 i i B Ty i TR

o Objects encapsulate both state and
behavior

o To support objects, we need

o Support for object state, e.g. defstructure
or stobjs

o Support for polymorphism

Object State

PR SR . S L e G B iU P G AR A Pty S0 LT TR v e B TN 0 i s PR i i oY

o Differentiate between two notions
o An object has state
o A reference points to an object
o There is only one copy of any object

o There can be many references to the same
object

Object State

AR Sk Tt g ety e Xt et Y Pk T BTN ot i i st o gy e e

o Objects live in the stobj memory
o ensures there is only one copy
o allows efficient access to object
o References are regular ACL2 elements

oce.g., (cons ‘square 18) points to
the object (which must be a square) at
location 18 of memory

The memory StObJ

AR S Tt G T Prver i A A Pty ST ST S s sV e Mg

o The memory stobj plays a central role

o All functions referencing objects must
include it in their signature

o Subject to the usual restrictions on usage of
stobjs

o References, however, are not subject to
these restrictions

Polymorphism

= Tk £ - = AL L LT r i i M s o =) - - 2 L]
L e B T e St LR H et T B T s T 8 A i I N s S AR

o Qur focus is polymorphism, a cornerstone
of object-oriented programming

o Polymorphism allows a caller to send a
message to an object (i.e., call a function)
without knowing the exact type of the object

o Used in inheritance and with interfaces

Introducing Classes

e L e PR Eh- L e R S Pt

(defclass measurable nil
((v :type integer :initially 0))

(defmethod measure (x memory)
(abs (measurable..v X memory)))

(defthm measure-is-non-negative-real
(implies (measurable-p X)
(and (realp (measure X memory))
(<= 0 (measure X memory)))))

Defining Axioms

mﬂﬁ*ﬁmﬂfﬂwuiﬁ et - 4. 3 TERRE R L S S ka0 0 isi en B P ld = i S T AR

o (measurable-p Xx)

o (strict-measurable-p x)
o (comparable..new memory)
o (measurable..v X memory)

o (measurable..update-v X new-v memory)

Note: measurable-p does not imply strict-
measurable-p

Method Definitions

AR S Tt G T Prver i A A Pty ST ST S s sV e Mg el T AR

o Definition:

o (implies (strict-measurable-p x)
(equal (measure X memory)
(abs (measurable..v x memory))))

o

o Constraint:

o (implies (measurable-p Xx)
(and (realp (measure X memory))
(<= 0 (measure X memory))))

The Role of Constraints

AR S Tt G T Prver i A A Pty ST ST S s sV e Mg

o Before a detclass event is accepted, ACL2
verifies that all the constraints are valid for
objects of this specific class

o This also applies to any constraints set by
ancestor classes

o Similar to constraints in an encapsulate
event -- but methods are executable

Subclassing

e B P NPT SO Po P b Re Lt P = v

(defclass complex measurable
((a :type real :initially 0)
(b :type real :initially 0))

(defmethod measure (c memory)
(let ((x (complex..a c memory))
(y (complex..b ¢ memory)))
(acl2-sqrt (+ (* X xX) (* Yy ¥)))))
)

Subclassing and Constraints

; T : & N g o e - g ¥ el £ . 5
mm*wwilﬂﬂﬂ-# R R Yoy el T B o e i T

o Before the defclass is accepted, ACL2
verifies the following obligation

o (i1mplies (strict-complex-p X)
(and (realp (measure X memory))
(<= 0 (measure X memory))))

o Notice measurable-p has been replaced
by strict-complex-p in the
hypothesis

Subclassing and Definitions

mm;wmwnim it - 11, 3 L S e g L, T 1

o New definition.:

(implies (or (strict-measurable-p Xx)
(strict-complex-p X))
(equal (measure X memory)
(cond ((strict-measurable-p Xx)
(abs (measurable..v x memory)))
((strict-complex-p X)
(let ((a (complex..a X memory))
(b (complex..b x memory)))
(acl2-sqgrt (+ (* a a) (* b b))))))))

Soundness

= Tk £ - = AL L LT r i i M s o =) - - 2 L]
L e B T e St LR H et T B T s T 8 A i I N s S AR

o “New definition” sounds like it opens a
door to nil

o But redefinitions are very restricted

o Essentially, methods are functions
defined in a major case-split

o Subclasses add cases to the split, but
they never change or delete old cases

Soundness

e T T L e ML TR PP e L 31 i e

o At any given time, we know of only some
possible subclasses of a class

o But for each class we can add an
unspecified “other” predicate to complete
the definition

o The complete definition is valid in ACL2

Soundness

' " o : > ooty e R L -
L e B T e St haet S I R L T

o The complete definition implies all of the
“partial” definitions

o [If we choose the “other” case carefully, it
also satisfies all the constraints

o Thus, we can replace defclass with a
complete definition of the methods, followed
with proof of the partial definitions

Soundness: The Translator

' " o : > ooty e R L -
L e B T e St haet S I R L T

o The argument can be formalized as a
translation from ACL2+defclass histories
into regular ACL2 histories

o We use this translation to define the
semantics of ACL2+defclass

Inheriting Functions

3 i : 2 ety S g e g € R e -
IR b Stk Tt gl e s el P e Vo A B A R

o Consider a list of references to measurable
objects

o It is easy to define a max-measure function
that finds the maximum measure in the list

o This function will also work on lists of
complex-p objects -- implicitly

o Theorems about this function will also
apply to complex-p objects -- implicitly

Current Status

PN e St Tt SR P STt A Pty S B AT s ML bt e e gy e i s Tl

o We have a “working” translator

o Translations require post-processing by

hand

o We have verified some “toy” problems

Future Work

PN e St Tt SR P STt A Pty S B AT s ML bt e e gy e i s Tl

o Verify something more substantial

o e.g., an abstract hashtable, a concrete
red-black tree, and a user of hashtables,
like a BDD translator

o Modify ACL2 to support defclass natively

