
Ruben Gamboa
University of Wyoming
ACL2 Workshop 2003

Polymorphism in ACL2

Preaching to choir: ACL2 is a terrific
theorem prover that has been used
successfully in several verification efforts
We are interested in verifying software
Objects are today’s dominant software
metaphor
ACL2 does not support objects (yet)

Motivation

Objects encapsulate both state and
behavior
To support objects, we need

Support for object state, e.g. defstructure
or stobjs
Support for polymorphism

Supporting Objects

Differentiate between two notions
An object has state
A reference points to an object

There is only one copy of any object
There can be many references to the same
object

Object State

Objects live in the stobj memory
ensures there is only one copy
allows efficient access to object

References are regular ACL2 elements
e.g., (cons ‘square 18) points to
the object (which must be a square) at
location 18 of memory

Object State

The memory stobj plays a central role
All functions referencing objects must
include it in their signature
Subject to the usual restrictions on usage of
stobjs
References, however, are not subject to
these restrictions

The memory Stobj

Our focus is polymorphism, a cornerstone
of object-oriented programming
Polymorphism allows a caller to send a
message to an object (i.e., call a function)
without knowing the exact type of the object
Used in inheritance and with interfaces

Polymorphism

 (defclass measurable nil

 ((v :type integer :initially 0))

 (defmethod measure (x memory)
 (abs (measurable..v x memory)))

 (defthm measure-is-non-negative-real
 (implies (measurable-p x)
 (and (realp (measure x memory))
 (<= 0 (measure x memory)))))

 ...)

Introducing Classes

(measurable-p x)

(strict-measurable-p x)

(comparable..new memory)

(measurable..v x memory)

(measurable..update-v x new-v memory)

Note: measurable-p does not imply strict-
measurable-p

Defining Axioms

Definition:
(implies (strict-measurable-p x)
 (equal (measure x memory)
 (abs (measurable..v x memory))))

Constraint:
(implies (measurable-p x)
 (and (realp (measure x memory))
 (<= 0 (measure x memory))))

Method Definitions

Before a defclass event is accepted, ACL2
verifies that all the constraints are valid for
objects of this specific class
This also applies to any constraints set by
ancestor classes
Similar to constraints in an encapsulate
event -- but methods are executable

The Role of Constraints

 (defclass complex measurable
 ((a :type real :initially 0)
 (b :type real :initially 0))

 (defmethod measure (c memory)
 (let ((x (complex..a c memory))
 (y (complex..b c memory)))
 (acl2-sqrt (+ (* x x) (* y y)))))
 ...)

Subclassing

Before the defclass is accepted, ACL2
verifies the following obligation

(implies (strict-complex-p x)
 (and (realp (measure x memory))
 (<= 0 (measure x memory))))

Notice measurable-p has been replaced
by strict-complex-p in the
hypothesis

Subclassing and Constraints

New definition:
(implies (or (strict-measurable-p x)
 (strict-complex-p x))
 (equal (measure x memory)
 (cond ((strict-measurable-p x)
 (abs (measurable..v x memory)))
 ((strict-complex-p x)
 (let ((a (complex..a x memory))
 (b (complex..b x memory)))
 (acl2-sqrt (+ (* a a) (* b b))))))))

Subclassing and Definitions

“New definition” sounds like it opens a
door to nil
But redefinitions are very restricted

Essentially, methods are functions
defined in a major case-split
Subclasses add cases to the split, but
they never change or delete old cases

Soundness

At any given time, we know of only some
possible subclasses of a class
But for each class we can add an
unspecified “other” predicate to complete
the definition
The complete definition is valid in ACL2

Soundness

The complete definition implies all of the
“partial” definitions
If we choose the “other” case carefully, it
also satisfies all the constraints
Thus, we can replace defclass with a
complete definition of the methods, followed
with proof of the partial definitions

Soundness

The argument can be formalized as a
translation from ACL2+defclass histories
into regular ACL2 histories
We use this translation to define the
semantics of ACL2+defclass

Soundness: The Translator

Consider a list of references to measurable
objects
It is easy to define a max-measure function
that finds the maximum measure in the list
This function will also work on lists of
complex-p objects -- implicitly
Theorems about this function will also
apply to complex-p objects -- implicitly

Inheriting Functions

We have a “working” translator
Translations require post-processing by
hand
We have verified some “toy” problems

Current Status

Verify something more substantial
e.g., an abstract hashtable, a concrete
red-black tree, and a user of hashtables,
like a BDD translator

Modify ACL2 to support defclass natively

Future Work

