

Motivation

@ Make it easier to understand ACL2 books
after the fact

@ Organize ACL2 books in a human-oriented,
not a proof-oriented manner

@ Publish ACL2 books in different formats
(web, print, ...) and different styles (ACL2
workshop, Nqthm, ...)

Literate Programming

@ We follow literate programming paradigm:

@ Source code and documentation in the
same source document

@ Tools extract the source code and
documentation for further processing

@ Originally invented by Knuth to make Pascal
programming less painful

Literate Programming
Tools

@ Two tools are needed
@ Extract source code
@ Extract documentation

@ Knuth wrote the programs “"tangle” and
"weave"” for this purpose

Using XML Tools

@ Tangle and Weave
@ process a text file
@ identify chunks from the text file
@ possibly reorder the chunks

@ possibly reformat the chunks

@ XML tools can do all that

XML Transformations

@ XSLT is the standard mechanism for
specifying XML transformations

@ These transformations can do everything we
need for literate programming

@ Our work is based on Norm Walsh's XSLT
stylesheets for literate programming

A Sample File

<article>

<para>
We begin by defining append.

</para>

<src:fragment id="top”>
(defun my-append (X y)
(1f (endp x)
y
(cons (car X) (my-append (cdr x) y))))
<src:fragref linkend="proofs”>
</src:fragment>

</article>

Extracting the ACL2
Proof Script

@ The XSLT stylesheets extract the
<src:fragment> chunk named "top"

@ Chunks referenced with <src:fragref> are
inserted into the output

@ Order of ACL2 proof script is not
necessarily the same as the order in the
original document

Extracting the
Documentation

@ Notice that we have two types of <tagss
@ <src:...> Tags
@ The remaining tags

@ The remaining tags can be in any XML
dialect, e.g., HTML, DocBook, ...

@ We need to convert <src....> tags to the same
XML dialect as the remaining tags

Extracting info HTML

@ «src:fragment> can be converted to HTML
<pre> tags

@ «src:fragref> can be converted into
hyperlinks to the appropriate section

Extending the <src:...»
Markup

@ So far, our tools know nothing of the ACL2
code inside <src:fragment>s

@ By adding more <src:...> markup, we can
customize our tools to provide different
presentations of the ACL2 code

Another Example

<src:defun function="my-append">
<src:arg>x</src:arg>
<src:arg>y</src:arg>
<src:body>
(Lf (endp x)
Yy
(cons (car X)
(my-append (cdr x) y)))
</src:body>
</src:defun>

Different Output
Styles

@ Now our stylesheets know when they are
processing a definition

@ They can render this definition in different
ways, e.g.

@ Traditional ACL2 syntax

@ Ngthm-style syntax

More <src:...> Tags

@ We can add tags for any ACL2 feature we
may want to special-case

@ Hints
@ Rule-Classes
@ Documentation strings

@ We must specify how to convert each new
tag into ACL2 and the surrounding XML

Examples

@ The best way to look at this work is to
browse through some examples

@ http://www.cs.uwyo.edu/~ruben/
projects/litproofs

