
Ruben Gamboa
July 14, 2003

Literate Proofs



Make it easier to understand ACL2 books 
after the fact

Organize ACL2 books in a human-oriented, 
not a proof-oriented manner

Publish ACL2 books in different formats 
(web, print, ...) and different styles (ACL2 
workshop, Nqthm, ...)

Motivation



We follow literate programming paradigm:

Source code and documentation in the 
same source document

Tools extract the source code and 
documentation for further processing

Originally invented by Knuth to make Pascal 
programming less painful

Literate Programming



Two tools are needed

Extract source code

Extract documentation

Knuth wrote the programs “tangle” and 
“weave” for this purpose

Literate Programming 
Tools



Tangle and Weave

process a text file

identify chunks from the text file

possibly reorder the chunks

possibly reformat the chunks

XML tools can do all that

Using XML Tools



XSLT is the standard mechanism for 
specifying XML transformations

These transformations can do everything we 
need for literate programming

Our work is based on Norm Walsh’s XSLT 
stylesheets for literate programming

XML Transformations



<article>
  <para>
    We begin by defining append.
  </para>

  <src:fragment id=”top”>
    (defun my-append (x y)
      (if (endp x)
          y
        (cons (car x) (my-append (cdr x) y))))
    <src:fragref linkend=”proofs”>
  </src:fragment>
  ...
</article>

A Sample File



The XSLT stylesheets extract the 
<src:fragment> chunk named “top”

Chunks referenced with <src:fragref> are 
inserted into the output

Order of ACL2 proof script is not 
necessarily the same as the order in the 
original document

Extracting the ACL2 
Proof Script



Notice that we have two types of <tag>s

<src:...> tags

The remaining tags

The remaining tags can be in any XML 
dialect, e.g., HTML, DocBook, ...

We need to convert <src:...> tags to the same 
XML dialect as the remaining tags

Extracting the 
Documentation



<src:fragment> can be converted to HTML 
<pre> tags

<src:fragref> can be converted into 
hyperlinks to the appropriate section

Extracting into HTML



So far, our tools know nothing of the ACL2 
code inside <src:fragment>s

By adding more <src:...> markup, we can 
customize our tools to provide different 
presentations of the ACL2 code

Extending the <src:...> 
Markup



<src:defun function="my-append">
<src:arg>x</src:arg>
<src:arg>y</src:arg>
<src:body>

    (if (endp x)
        y
      (cons (car x)
            (my-append (cdr x) y)))

</src:body>
</src:defun>

Another Example



Now our stylesheets know when they are 
processing a definition

They can render this definition in different 
ways, e.g.

Traditional ACL2 syntax

Nqthm-style syntax

Different Output 
Styles



We can add tags for any ACL2 feature we 
may want to special-case

Hints

Rule-Classes

Documentation strings

We must specify how to convert each new 
tag into ACL2 and the surrounding XML

More <src:...> Tags



The best way to look at this work is to 
browse through some examples

http://www.cs.uwyo.edu/~ruben/
projects/litproofs

Examples


