Inductive Assertions and Operational Semantics
— Long Version

J Strother Moore

Department of Computer Sciences
University of Texas at Austin
Taylor Hall 2.124
Austin, Texas 78712
moore@cs.utexas.edu

Abstract. This paper shows how classic inductive assertions can be
used in conjunction with an operational semantics to prove partial cor-
rectness properties of programs, without the introduction of a verifica-
tion condition generator. In particular, we show how a formal statement
about the operational semantics can be deduced more or less directly
from verification conditions and how a “natural” proof strategy gener-
ates those verification conditions as subgoals. Both iterative and recur-
sive programs are considered. Assertions are attached to the program
by defining a predicate on states. This predicate is then “completed” to
an alleged invariant by the definition of a tail-recursive partial function
defined in terms of the state transition function of the operational se-
mantics. If this alleged invariant can be proved to be an invariant under
the state transition function, it follows that the assertions are true every
time they are encountered in execution and thus that the post-condition
is true if reached from a state satisfying the pre-condition. But because
of the manner in which the alleged invariant is defined, the verification
conditions are not only sufficient to prove invariance but can be gener-
ated automatically in the proof attempt. The fact that the assertions are
completed via tail-recursion means that it is unnecessary to prove that
the completion process terminates. Indeed, the invariant function may
be thought of as a state-based verification condition generator built in a
single function definition from the state transition function of the oper-
ational semantics. The method allows standard inductive assertion style
proofs to be constructed directly in an operational semantics setting. To
demonstrate the technique, a pre-existing model of the Java Virtual Ma-
chine is used as the operational semantics. Partial correctness theorems
about several simple Java methods are presented. A technique for deal-
ing with recursive method invocation is described and illustrated. These
theorems are contrasted with total correctness results proved by defining
“clock functions” that characterize how many steps are to be executed.

1 Summary

A formal operational semantics consists of a representation of a machine state
together with the formal definition of a state transition function, step. In our



treatment, the machine state contains a representation of the programs to be
executed. The state is an object in the formal logic and step is defined as a
function from states to states in that logic.

The ACL2 [6] logic is used here. Function application is denoted as in Lisp.
Hence, (step s) denotes the state obtained by applying the state transition
function to s. The expression (run k s) is defined to be the state obtained by
stepping s k times.

A typical total correctness theorem in this setting is a formula of the form

(implies (P nO s)
(Q n0 (run (clock n0) s)))

Here, P is the pre-condition for the program in s with initial inputs n0. For sim-
plicity, suppose that the pre-condition includes the requirement that the program
counter (pc) of s be some single entry point, (entry). @ is the post-condition.
Suppose it includes the requirement that the pc be at a single exit point {exit).
(Clock n0) is defined to return the number of steps necessary to drive the pro-
gram from (entry) to (exit) when the pre-condition is true. This is a strong total
correctness theorem because it not only guarantees termination but specifies how
long the program runs. Many such examples may be found in [12].

Suppose a “partial correctness” theorem is desired. Such a theorem might
take the form:

(implies (and (P nO s)
(equal (pc (zrun k s)) (exit)))
(@ n0 (run k s)))

The theorem may be read as “if s satisfies the pre-condition and a run of ar-
bitrary length k produces a state where control has reached (ezit), then the
post-condition is true.”!

Such theorems are typically proved by the inductive assertion method. This
is not new. What is new to this paper is a method for embedding the inductive
assertion proof technique into an operational semantics model.

The first step is to attach assertions at selected cut-points by defining a
function such as:

(defun assert (n0 s)
(cond ((equal (pc s) (entry)) (P n0 s))
((equal (pc s) (loop)) (I nO s))

'(.(‘equal (pc s) (exit)) (Q n0 s))
(t nil)))

Next, this assertion is completed to an alleged invariant on states by defining
the partial function:

(defpun invariant (nO s)

! The precise form depends on the program. One may need to distinguish “exit,” “first
exit,” and “top-level exit.” This is discussed later.



(if (member (pc s) ’({entry) (loop) ... (exit)))
(assert nO s)
(invariant n0 (step s))))

This tail-recursive definition can be admitted to the ACL2 logic soundly since
Manolios and Moore [9] proved that every tail-recursive equation has an admis-
sible total function as a witness. (The invariant function need not mention
every possible value of the pc, but may not terminate unless every loop is cut.)
To members of the Boyer-Moore community, the only novel idea in this pa-
per is the observation that the assertion can be completed to an invariant in a
tail-recursive way without incurring a termination proof.

The third step is to prove that invariant is, indeed, invariant under stepping.

(implies (invariant nO s)
(invariant n0 (step s)))

When invariant is defined as shown here, this generates the same proof obli-
gations as a conventional “verification condition generator” (VCG) would.

The fourth step is to observe, by a trivial induction which is automatic for
ACL2, that the invariant holds for arbitrary runs.

(implies (invariant nO s)
(invariant n0 (run k s)))

The desired partial correctness result follows from the invariance above: if
a state at (entry) satifies the pre-condition and a run reaches a state at (exit)
then the post-condition holds.

2 Related Work

The inductive assertion method for proving programs correct is among the oldest
such methods. The idea was implicitly used by von Neumann and Goldstine in
[3] and made explicit in the classic papers by Floyd [2] and Hoare [4]. The first
mechanized verification condition generator, which generates proof obligations
from code and attached assertions, was written by King [7]. McCarthy [10] made
explicit an alternative approach, operational semantics, in which “the meaning
of a program is defined by its effect on the state vector.”

This paper concerns the combination of the two, namely, the use of induc-
tive assertions to prove theorems about programs modeled with an operational
semantics. Inductive assertions and state invariants are essential in verifying par-
tial correctness, safety, and other properties in an operational setting. Another
view of this work is that it proposes a method of defining state invariants by
completing assertions provided for selected cut points in a program.

The use of inductive assertions in conjunction with a formal operational
semantics to prove partial correctness results mechanically is not new. Robert
S. Boyer and the author developed it for their Analysis of Programs course at
the University of Texas at Austin as early as 1983. In that class, an operational



semantics for a simple procedural language in Nqthm [1] was defined and the
course explored program correctness proofs that combined operational semantics
with inductive assertions. These proofs motivated the exploration of total versus
partial correctness, Hoare logics, and verification condition generation. For an
Ngthm proof script illustrating the use of inductive assertions in an operational
semantics setting, see [11].

A recent example of the use of assertions to prove theorems about a program
modeled operationally may be found in [13], where a safety property of a non-
terminating multi-threaded Java system is proved with respect to an operational
semantics for the Java Virtual Machine [12].

So what is new? A careful look at the earlier work reveals that the invariant
explicitly included an assertion for every value of the pc. (The invariant must
recognize every reachable state and so must handle every pc; the issue is whether
it does so explicitly or implicitly.) The classic Floyd-Hoare inductive assertion
method requires an assertion only for selected cut points; a VCG is used to
produce the proof obligations by propagating the assertions through the code.

An alternative way to combine inductive assertions at selected cut points
with an operational semantics in a completely formal setting is to formalize and
verify a VCG with respect to the operational semantics. In [5], for example,
a HOL proof of the correctness of a VCG for a simple procedural language is
described. The work includes support for mutually recursive procedures. Formal
proofs of the verification conditions could, in principle, be used with the theorem
stating the correctness of the VCG, to derive a property stated operationally.
But the method described here does not require the definition of a VCG, much
less a proof of its correctness.?

Another way to use inductive assertions to prove theorems in an operational
setting is to admit invariant under the definitional principle. The admission
would require proving termination of the recursion, which would, in turn, require
defining a measure of the distance to the next cut point and proving that it de-
creased under step. That would represent a proof burden not generally incurred
by the user of a VCG.

The technique used here exploits the observation that invariant is tail-
recursive and hence admissible without proof obligation, given the work of Mano-
lios and Moore [9] in which it was proved that every tail-recursive equation may
be witnessed by a total function. The tail-recursive function may not be uniquely
defined by the equation — this occurs if insufficient cut points are chosen. Such
a failure is manifested by an infinite loop in the process of generating/proving
the step invariance. This is the same behavior a VCG user would experience in
the analogous situation.

The observation that the assertions at the cut points can be completed to an
alleged invariant without incurring proof obligations beyond those of the classic

2 One could regard invariant, above, as a VCG. But if so it differs from classic
VCGs in two senses. First, it is state based. Second, it is trivial by comparison
to conventional VCGs, because it leverages the formal definition of the operational
semantics.



method immediately opens the door to inductive assertion-style proofs in an
operational semantics setting.

The technique here is similar in spirit to one used by Pete Manolios [private
communication] to attack the 2-Job version of the Apprentice problem [13].
There, he defined the reachable states of the Apprentice problem as all the states
that could be reached from certain states by the execution of a fixed maximum
number of steps.

3 Outline of the Paper

The organization of this paper is as follows. Section 4 presents a sketch of a
formal operational model of the Java Virtual Machine. The inductive assertion
method is illustrated by proving theorems about several bytecoded methods.
The semantics of the JVM are of no special interest in this paper; this particular
model was chosen because it is available, it is realistic, and writing a VCG for
it would be a significant task.

Section 5 presents an interative version of the int-valued factorial program
and explains the JVM bytecode for it. The program is partial: it does not ter-
minate for all well-typed inputs (namely, for negative ints). The bytecode is
essentially that produced by the Sun javac compiler, with one simplifying mod-
ification: the program terminates by stopping the machine rather than by re-
turning to its caller. Thus, the “exit” is the unambiguous.

Section 6 presents the formal pre-condition, post-condition and loop invariant
for the iterative factorial program. Section 7 presents the classical verification
conditions for the partial correctness proof of the annotated program. These are
actually generated automatically in the course of the proof described in Section
10.

Section 9 is the illustration of the “nugget” of this paper. It shows how
to define a state invariant in terms of the assertions so that the proof of its
invariance will devolve to the verification conditions. The proof is presented in
Section 10.

Section 11 addresses method invocation and return in the “non-recursive”
case, i.e., for methods that do not call themselves recursively. Handling method
invocation and return is crucial for a practical compositional methodology. In
this section, the artificial modification to the bytecode for the iterative factorial
method is removed and the program executes a return to its caller. The earlier
methodology is extended to permit a partial correctness proof of this program
via the inductive assertion method by formalizing the notion of “first exit.”

Section 12 deals with recursive method invocation and return. The section
presents a recursive int-valued Java factorial program expressed with the Sun
javac bytecode. The methodology is extended again to permit the proof of the
program’s partial correctness via the inductive assertion method by formalizing
the notion of “return to caller.”

Section 13 concludes the paper with a brief recapitulation of the results.



The proofs mentioned in this paper have been mechanically checked by the
ACL2 theorem prover. But this paper does not present every required lemma.
In some of the theorems displayed below, hints and other pragmatic advice
provided by the author have been omitted. The paper focuses on the basic idea
of inductive assertions in an operational semantics, not on how to get a particular
theorem prover to prove the verification conditions. The supporting proof scripts
for all the ACL2 proofs are available on the web at http://www.cs.utexas.-
edu/users/moore/publications/trecia/index.html.

4 Background on the JVM

To illustrate the technique an operational semantics must be introduced. In this
paper a pre-existing operational semantics for a significant fragment of the JVM
[8] is used. The model is called M5 [12]. The semantics of the bytecode may be
gathered from [8] or by inspection of the formal model. In this paper, comments
in displayed bytecode explain the language.

The state of the JVM is represented by a triple consisting of a thread ta-
ble, a heap and a class table. The thread table is an association list mapping
thread identifiers to local thread states. The most interesting part of a local
thread state is the activation or call stack: a stack of frames corresponding to
the currently active methods. Each frame contains a program counter and the
bytecode program for the method in question, a list of local variable values ac-
cessed by position, and an operand stack for the computation of intermediate
results. Frames and local thread states contain many other components, such as
status flags, references to locked objects, etc.

The second component of the M5 state is the heap, an association list map-
ping heap addresses to instance objects. Each instance object is, in turn, an
association list mapping class names to the assignments of values to the in-
stance fields of the corresponding class. The values of fields may be references
to other heap addresses.

The third component of the M5 state is the class table, an association list
mapping class names to class descriptions, including the superclasses, static
fields, and the methods provided by the class. Each method description includes
a characterization of the formals of the method and the bytecode for the method,
among other attributes.

The step function for M5 models 138 JVM bytecode instructions, including
those for the creation of instance objects in the heap, the invocation of static,
special, and virtual methods, the creation of multiple threads, synchronization
via monitors, and a full range of many different kinds of data manipulation, in-
cluding that for 32-bit twos complement arithmetic, here called “int arithmetic”
after the Java term for such integers. In int arithmetic, overflow is not signaled;
adding one to the most positive integer produces the most negative integer.

The step function for M5 takes two arguments instead of just one; (step
th s) is the state obtained by stepping thread th in state s. The run function,
instead of taking the number of steps, takes a list of thread identifiers, called a



schedule, and steps those threads sequentially. In this setting, the “clock func-
tions” mentioned earlier become “schedule functions” specifying exactly how to
step the various threads to reach the desired state.

Writing a VCG for JVM bytecode is a serious and error-prone undertaking.

5 An Iterative Program

Below is an M5 program that decrements its first local, informally called n, by 2
and iterates until the result is 0. On each iteration it adds 1 to its second local
variable, here called a, which is initialized to 0. Thus, the method computes (/
n 2), when n is even. It does not terminate when n is odd.

The program is slightly simpler to deal with if it is assumed that n is a non-
negative int. The program actually terminates for even negative ints, because
Java’s int arithmetic wraps around: the most negative int, -2147483648, is even
and when it is decremented by 2 it becomes the most positive even, 2147483646.
For simplicity, the program concludes with the fictitious HALT instruction, which
stops the machine. The program constant below is named *flat-prog#* because
it does not return to a caller but stops the machine. Method invocation is dis-
cussed later in the paper.

(defconst *flat-progk

> ((ICONST-0) ; 0
(ISTORE_1) ;1 a:=0
(ILDAD_O) ; 2 top of loop:
(IFEQ 14) ; 3 if n=0, goto 17
(ILOAD 1) ;6
(ICONST-1) N
(IADD) ; 8
(ISTORE_1) ;9 a := atl
(ILDAD_O) ;10
(ICONST_2) ;11
(ISUB) ;12
(ISTORE.O) ;13 n := n-2
(GOTO -12) ;14 goto top of loop
(IL0OAD 1) ;17 push a
(HALT))) ;18

Let the initial value of n be n0. The goal is to prove that if nO is a non-
negative int and control reaches pc 18, then n0O is even and (/ n 2) is on the
stack. That is, if the program halts the initial input must have been even and
the final answer is half that input. The proof is done without defining a schedule
or clock function and without counting or caring about how many instructions
are executed and without incurring any more proof overhead than had a VCG
for the JVM been used.

Rather than deal with integer division during the code proof, the following
function is introduced. The decision to use this function rather than algebraic



expressions to express the properties of the code is independent of the decision
to express the properties with inductive assertions.

(defun halfa (n a)
(if (zp n)
a
(halfa (- n 2) (int-fix (+ a 1)))))

Here, int-fix returns the integer represented by the low-order 32-bits of its ar-
gument and thus implements int wrap-around. The inductive assertion method
will be used to establish that if the program terminates it will leave (halfa nO
0) on the stack. A second theorem, independent of the code, establishes that
(halfa n0 0) is (/ n 2) under certain conditions. Such decomposition of code
proofs into “algorithm” and “requirements” is standard in the ACL2 community
and independent of whether inductive assertions are being used. It is possible, of
course, to mix the two via inductive assertions about division or multiplication
by two.

6 The Assertions at the Three Cut Points

The cut points, to which assertions will be attached, are at pcs 0 (entry), 2
(loop), and 18 (exit). The assertions themselves are captured by the following
function definitions. The names of the functions are, of course, irrelevant but
indicate how they will be used.

(defun flat-pre-condition (n0 n)
(and (equal n n0)
(intp nO)
(<= 0 n0)))
(defun flat-loop-invariant (n0O n a)
(and (intp nO0)
(<= 0 nO)
(intp n)
(if (and (<= 0 n)
(evenp n))
(equal (halfa n a)
(halfa n0 0))
(not (evenp n)))
(iff (evenp n0) (evenp n))))
(defun flat-post-condition (nO value)
(and (evenp n0)
(equal value (halfa n0O 0))))

The details of the assertions are not germane to this paper. The assertions are
typical inductive assertions for such a program. They are complicated primarily
because of Java’s int arithmetic. Halfa tracks the behavior of the program only
as long as n stays non-negative. Things would be simpler if the pre-condition



required that nO be even. Under that more restrictive pre-condition it would be
easy to define a clock function and prove total correctness. The pre-condition
used here does not require n0O to be even. Instead, it will be proved that if the
program terminates then nO is even: the post-condition asserts that nO is even.
In addition the post-condition asserts that the value computed is (halfa n0 0).

7 Verification Conditions

Given *flat-prog*, the informal attachment of the three assertions to the cho-
sen cut points, and a VCG for the JVM, the following verification conditions
would be produced.

(defthm VC1 ; entry to loop
(implies (flat-pre-condition nO n)
(flat-loop-invariant nO n 0)))
(defthm VC2 ; loop to loop
(implies (and (flat-loop-invariant n0 n a)
(not (equal n 0)))
(flat-loop-invariant n0 (int-fix (- n 2)) (int-fix (+ 1 a)))))
(defthm VC3 ; loop to exit
(implies (and (flat-loop-invariant n0 n a)
(equal n 0))
(flat-post-condition n0 a)))

These are easily proved. The challenge is: how can these three theorems be
used to verify a partial correctness result for *flat-prog*?

8 Attaching the Assertions to the Code

The assertions are attached to the code by defining the following predicate.

(defun flat-assertion (n0O th s)
(let ((n (nth O (locals (top-frame th s))))
(a (nth 1 (locals (top-frame th s)))))
(and (equal (program (top-frame th s)) *flat-progk)
(case (pc (top-frame th s))
(0 (flat-pre-condition nO n))
(2 (flat-loop-invariant nO n a))
(18 (let ((value (top (stack (top-frame th s)))))
(flat-post-condition n0 value)))
(otherwise nil)))))

The let identifies parts of the JVM state of interest: the 0" local of thread th,
called n, and the 1°¢ local of thread th, called a. Tt requires that the program
being executed by the thread be *flat-prog*. It then case splits on the pc of
thread th and for each of pcs 0, 2, and 18 makes an assertion about n, a, and



10

n0. The variable symbol value at the post-condition is bound to the value on
top of the stack at the conclusion of the program.

9 The Nugget: Defining the Invariant

The nugget in this paper is how the assertions, attached to selected cut points,
are completed into an invariant on states.

This is accomplished by using a tail-recursive “definition” introduced without
a termination proof obligation under the defpun utility of [9]. The assertions are
tested at the three cut points and all other statements inherit the invariant of
the next statement.

(defpun flat-inv (nO th s)
(if (or (equal (pc (top-frame th s)) 0)
(equal (pc (top-frame th s)) 2)
(equal (pc (top-frame th s)) 18))
(flat-assertion n0 th s)
(flat-inv n0 th (step th s))))

Had defun been used instead of defpun, a termination proof would be re-
quired. An appropriate measure would be the distance to the next cut point.
The termination proof would be tantamount to proving that all loops were cut
— a proof obligation not incurred by the user of a VCG.

After defining flat-inv above a technical lemma is proved that forces ACL2
to expand calls of flat-inv if the state is poised at some pc other than 0, 2,
or 18. See flat-inv-make-state-opener in the script for the details. If all
the loops have been cut, this opening will stop and a “verification condition”
will emerge. If some loop is not cut, the ACL2 rewriter will not terminate — a
situation exactly comparable to what would happen in the classic approach.

10 Proofs

Here is the key theorem. It is proved without further guidance given the three
verification conditions VC1, VC2, and VC3.

(defthm flat-inv-step
(implies (flat-inv nO th s)
(flat-inv n0 th (step th s))))

The proof is given below. However, it is described in terms of the process that
generates it: the mechanical manipulation of the definitions and goal above.
Proof. Expand the definition of flat-inv in the hypothesis. This produces four
subgoals: the pc is at 0, 2, 18, or somewhere else. In the last case, the hypothesis
becomes the conclusion and there is nothing more to prove. In the case where



11

the pc is 18, the step is a no-op because the instruction executed is HALT so the
conclusion becomes the hypothesis. There are thus two non-trivial cases.

Case: pc = 0. Then the hypothesis becomes (flat-pre-condition n0 n). The
step in the conclusion expands, symbolically executing the first instruction, and
produces a state with pc 1 and with 0 on top of the stack. There is no assertion
attached to pc 1 and so flat-inv performs another step, executes another
instruction symbolically, deposits the 0 into the 1¢ local, and produces a state
with pc 2. There is an assertion here. When applied to the state it becomes
(flat-loop-invariant n0 n 0). This is VC1 and is thus proved.

Case: pc = 2. The hypothesis becomes (flat-loop-invariant nO n a). The
step produces a state with pc 3. Since no assertion is found there, another step
is taken, symbolically executing the IFEQ instruction. This produces two possible
successor states, depending on whether n is 0. Symbolic stepping continues on
both paths until an assertion is reached. One of the paths produces VC2 and the
other produces VC3.

Q.E.D.

Note that the proof process described above actually generates the verifica-
tion conditions. Thus, it is not actually necessary to identify and prove them sep-
arately. Defining flat-assertion and flat-inv as shown, and then attacking
flat-inv-step, is exactly equivalent to generating and proving the verification
conditions but produces a theorem about the operational semantics.

Having proved the invariance of flat-inv under step the next theorem in
the “methodology” is trivial. The theorem states that flat-inv is invariant
under arbitrarily long runs of the thread in question.

(defthm flat-inv-run
(implies (and (mono-threadedp th sched)
(flat-inv n0 th s))
(flat-inv n0 th (run sched s))))

where

(defun mono-threadedp (th sched)
(if (endp sched)
t
(and (equal th (car sched))
(mono-threadedp th (cdr sched))))).

Proof of flat-inv-run is trivial by induction and appeal to flat-inv-step.
Thus, if the initial state has pc 0 and satisfies the pre-condition, and, after
some arbitrary mono-threaded run, a state with pc 18 is reached, then it satisfies
the post-condition, namely, nO is even and the answer is (halfa n0 0). Formally
this can be written as follows.
(defthm flat-main
(let ((s1 (run sched s0)))
(implies (and (intp nO)
(<= 0 n0)



12

(equal (pc (top-frame th s0)) 0)
(equal (locals (top-frame th s0)) (list nO any))
(equal (program (top-frame th s0)) *flat-prog*)
(mono-threadedp th sched)
(equal (pc (top-frame th s1)) 18))
(and (evenp nO)
(equal (top (stack (top-frame th s1)))
(halfa n0 0))))))

This is proved by using the instance of flat-inv-run obtained by letting s be
s0.

Flat-mainis essentially the goal, except it characterizes the answer as (halfa
n0 0). If (/ n0 2) were preferred, either a separate proof relating (halfa nO
0) to (/ nO 2) could be performed, or the assertions could be stated in terms
of division in the first place. In any case, this issue is independent of the use of
inductive assertions.

Notice what has been accomplished. Flat-main is a partial correctness the-
orem about a JVM program, formalized with an operational semantics. The
creative part of the proof consisted of the definition of the three assertions.
The proof of the key lemma, flat-inv-step, generated (and requires the proof
of) the classic verification conditions just as though a VCG for the JVM were
available. But no VCG was defined. The proof does not establish termination of
the code under the pre-conditions but does characterize necessary conditions to
reach the HALT statement. Finally, neither the theorem nor the proof involved
counting instructions or defining a clock function.

11 Method Invocation and Return

The HALT instruction in the previous program is fictitious but handy. Stepping
the machine while on a HALT leaves the machine at the HALT. Thus, the invariance
of the exit assertion is easy to prove once the exit is reached. In realistic code, the
machine does not halt but returns control to the caller and non-trivial stepping
continues. A useful inductive assertion methodology must deal with call and
return.

On the JVM, method invocation pushes a new stack frame on the invocation
stack. Abstractly, that frame may be thought of as containing the bytecode
for the newly invoked method with initial pc 0. The new frame contains an
initially empty “operand stack” for intermediate results. When certain return
instructions are executed, the topmost item, v, on the operand stack is removed,
the invocation stack is popped, and v is pushed onto the operand stack of the
caller.?

To prevent the machine from running “past” the return of interest, define

(defun run-to-return (sched th dO s)
(cond ((endp sched) s)

3 Some forms of return implement void methods and return no v to the caller.



13

((<= @0 (sdepth (call-stack th s)))
(run-to-return (cdr sched) th dO (step (car sched) s)))
(t s)))

which runs a state s with schedule sched until the depth of the invocation stack
of thread th is less than d0. If that condition is never satisfied, the state is run
until the schedule is exhausted. This function is easily related to run.
Using run-to-return instead of run in the main theorem, returns can be
dealt with via inductive assertions. Let *half-prog#* be the bytecode that results
from replacing the last instruction in *flat-prog* by (IRETURN), which returns
one int value to the caller.
Here is the assertion function for *half-prog*. It is comparable to flat-assertion
in its program-specific content but contains supplementary material to handle
features of the JVM, including the invocation stack.

(defun half-assertion (n0O dO th s)
(cond
((< (sdepth (call-stack th s)) dO) ; See note

(let ((value (top (stack (top-frame th s)))))
(flat-post-condition nO value)))
(t
(let ((n (nth 0 (locals (top-frame th s))))
(a2 (nth 1 (locals (top-frame th s))))
(stack (stack (top-frame th s))))
(and (equal (sdepth (call-stack th s)) dO) ; See note

(equal (program (top-frame th s)) *half-progk)
(equal (sync-flg (top-frame th s)) ’UNLOCKED) ; See note

(case (pc (top-frame th s))
(0 (flat-pre-condition n0O n)) ; See note

(2 (flat-loop-invariant nO n a))

(18 (let ((value (top (stack (top-frame th s)))))
(flat-post-condition nO value)))

(otherwise nil)))))))

Note 0: The assertions are exactly those used in the flat example. Note 1: This
clause asserts that when control returns from depth d0, the exit assertion (also
found for pc 18) is true. Think of d0 as the depth of the call stack while control
is in the program in question. Note 2: This conjunct asserts that when control
is in *half-prog* the call stack has length d0. Recursive methods require an
inequality here and that is illustrated later. Note 3: Return from “synchronized”
methods on the JVM release the monitor on a certain instance object in the
heap. The conjunct here asserts that the *half-prog* method is not synchro-
nized and thus the heap is not affected by return. Otherwise, this function is
flat-assertion.



14

The invariant for *half-prog* is exactly analogous to what was shown for
xflat-prog*, with one more case to handle the return from the method.

(defpun half-inv (nO d0 th s)
(if (or (< (sdepth (call-stack th s)) d0)
(equal (pc (top-frame th s)) 0)
(equal (pc (top-frame th s)) 2)
(equal (pc (top-frame th s)) 18))
(half-assertion n0 dO th s)
(half-inv n0 40 th (step th s))))

The invariance theorem is also analogous:

(defthm half-inv-step
(implies (and (integerp d0)
(< 1 do)
(<= d0 (sdepth (call-stack th s)))
(half-inv n0 40 th s))
(half-inv n0 40 th (step th s))))

However it requires that d0 be a positive integer (guaranteeing that a call frame
is below that for the program in question — this is the frame to which control
will return when the IRETURN is executed) and that d0 not exceed the depth of
the call stack. The proof of this theorem proceeds exactly as before, with one
additional but trivial verification condition: the assertion at the IRETURN insures
the assertion for the caller’s frame.*

From the invariance theorem it follows trivially that:

(defthm half-inv-run-to-return
(implies (and (mono-threadedp th sched)
(integerp 40)
(< 1 do)
(half-inv n0 40 th s))
(half-inv n0 dO th (run-to-return sched th d0 s))))

and hence

(defthm half-main
(let ((s1 (run-to-return sched th (sdepth (call-stack th s0)) s0)))

(implies (and (intp nO)
(<= 0 n0)
(equal (pc (top-frame th s0)) 0)
(equal (locals (top-frame th s0)) (list nO any))
(equal (program (top-frame th s0)) *half-progk*)
(equal (sync-flg (top-frame th s0)) ’unlocked)
(< 1 (sdepth (call-stack th s0)))
(mono-threadedp th sched)

* The assertion at the IRETURN may be eliminated entirely but this presentation makes
the assertion more closely resemble that for *flat-progk.



15

(< (sdepth (call-stack th s1))
(sdepth (call-stack th s0))))
(and (evenp n0)
(equal (top (stack (top-frame th s1)))
(halfa n0 0))))))

The final theorem captures partial correctness for *half-prog#*: Suppose thread
th of state sO satisfies the pre-condition for *half-prog*, namely, n0 is a pos-
itive int, the pc is 0, the first local is n0, the program is *half-prog*, the
frame is not synchronized, and the call stack depth exceeds 1. Such a frame
might be produced by calling a method whose body consists of the bytecodes in
*half-progx. Suppose sched is an mono-threaded schedule on th and is of ar-
bitrary length. Let s1 be the result of running s0 with sched “until” the return
from depth d0. There is no guarantee that such a return occurs. However, the
last hypothesis above supposes that it does.

Then the conclusion is that n0 is even and the top item on the caller’s operand
stack is (halfa n0 0) (aka (/ n0 2)).

12 Recursive Methods

To handle recursive methods the assertion must include a description of the invo-
cation stack down to the external caller. To illustrate the elaborations necessary
to handle this, consider the bytecode generated for the following Java by the
Sun javac compiler.

public static int fact(int n){
if (n>0)
{return n*fact(n-1);}
else return 1;

}
That bytecode, in M5 notation, is

(defconst *fact-def*
’("fact" (INT) NIL

(ILDAD.O) i3 O
(IFLE 12) i 1
(ILDAD_0O) 33 4
(ILDAD.O) 133 B
(ICONST_1) i;; 6
(ISUB) iy T
(INVOKESTATIC "Demo" "fact" 1) ;33 8
(IMUL) ;55 11
(IRETURN) i3 12
(ICONST_1) ;53 13
(IRETURN))) 33 14

Note that the constant above includes the bytecode for fact but also includes



16

other information from the class table entry for fact. The body of fact is
actually the cdddr of this constant.

The following function characterizes an invocation stack of internal calls of
fact. Note that when the INVOKESTATIC instruction at pc 8 is executed, the pc
is advanced to 11 in the caller’s frame and “then” the new frame is pushed.

(defun fact-caller-framesp (cs n0 k)
(cond ((zp k) t)
((and (equal (pc (top cs)) 11)
(equal (program (top cs)) (cdddr *fact-def*))
(equal (sync-flg (top cs)) ’UNLOCKED)
(intp (nth 0 (locals (top cs))))
(equal (+ n0 (- k)) (- (nth O (locals (top cs))) 1))
(equal (nth O (locals (top cs)))
(top (stack (top cs)))))
(fact-caller-framesp (pop cs) n0 (- k 1)))
(t ni1)))

This predicate checks that the top k frames on the invocation stack cs (“call
stack”) are internal calls of fact. Namely, the pc is 11, the program is that for
fact, the frames are unsynchronized, the first local is an int, the first local is
related to nO appropriately given its depth in the call stack, and the first local
is also on top of the operand stack.

The assertion for fact is then written as follows. This looks complicated
but contains a lot of “boilerplate” common to all recursive JVM methods. The
expression (! n) below denotes the mathematical factorial function applied to
n and is unbounded (unlike fact, which uses int arithmetic).

(defun fact-assertion (n0 d0 th s)
(cond
((< (sdepth (call-stack th s)) d40)
(equal (top (stack (top-frame th s)))
(int-fix (! n0))))
(t
(let ((n (nth 0 (locals (top-frame th s)))))
(and (equal (program (top-frame th s)) (cdddr *fact-defx*))
(equal (lookup-method "fact" "Demo" (class-table s))
*fact-defx*)
(equal (sync-flg (top-frame th s)) ’UNLOCKED)
(intp no0)
(intp n)
(<= 0 n)
(<= n n0)
(equal (sdepth (call-stack th s)) (+ dO (- nO n)))
(fact-caller-framesp (pop (call-stack th s)) nO (- nO n))
(case (pc (top-frame th s))
(0 t)



17

((12 14) (equal (top (stack (top-frame th s)))
(int-fix (! n))))
(otherwise nil)))))))

When control exits from depth d0, the assertion is that the top item on the
operand stack of the caller is the int-fix of (! n0) (the twos-complement
integer denoted by the low-order 32 bits of the mathematical factorial of the
input). While in the fact method, the assertion checks that the program is that
for fact, the bytecode continues to be found in the class table, the frame is
unsynchronized, n0 and n (the first local) are ints such that 0 < n < n0, the
call stack depth is appropriately related to dO, n0 and n, and the appropriate
number of frames below this one are internal calls of fact. Finally, the specific
cut points chosen for fact are the entry, pc 0, and the two exits, pcs 12 and 14.
The pre-condition is vacuous (all has already been said). The post-condition is
that the top of the stack contains the int-fix of (! n).

It is not necessary to introduce explicitly such functions as pre-condition,
loop-invariant, and post-condition. The assertions may be written “inline”
in the fact-assertion function, as done above.

The invariant is defined with defpun exactly analogously to previous exam-
ples. The invariance theorem is also analogous.

(defthm fact-inv-step
(implies (and (integerp dO)
(< 1 d0)
(<= d0 (sdepth (call-stack th s)))
(fact-inv n0 dO th s))
(fact-inv n0 d0 th (step th s))))

The four verification conditions proved are interesting. The first considers the
path from the entrance at pc 0 through the “base case” exit at pc 14. The second
considers the path from the entrance at pc 0 through the INVOKESTATIC instruc-
tion at pc 8, to the recursive entrance in the frame pushed by the INVOKESTATIC.
The third and fourth consider the paths from the two exits (at pcs 12 and 14)
to the exits in caller’s frame. That is, one condition stays in the current frame,
one condition relates the current frame to the newly pushed one upon recursive
method invocation, and the other two relate (both exits from) the current frame
to the caller’s frame. The proof actually generates more than four cases because
the assertions are inlined and cause case splits. This is akin to optimization and
simplification built into the VCG.
The run-to-return theorem is exactly analogous to that shown for ¥half-prog#

and is proved automatically.

(defthm fact-inv-run-to-return
(implies (and (mono-threadedp th sched)
(integerp 40)
(< 1 do)
(fact-inv n0 d0 th s))
(fact-inv n0 d0 th (run-to-return sched th d0 s))))



18

Finally, the main theorem is the desired partial correctness theorem for an
int valued recursive fact method.

(defthm fact-main
(let ((s1 (run-to-return sched th (sdepth (call-stack th s0)) s0)))
(implies (and (intp nO)

(<= 0 no0)

(equal (pc (top-frame th s0)) 0)

(equal (locals (top-frame th s0)) (list n0))

(equal (program (top-frame th s0))
(cdddr *fact-def*))

(equal (sync-flg (top-frame th s0)) ’unlocked)

(equal (lookup-method "fact" "Demo" (class-table s0))
xfact-def*)

(< 1 (sdepth (call-stack th s0)))

(mono-threadedp th sched)

(< (sdepth (call-stack th s1))
(sdepth (call-stack th s0))))
(equal (top (stack (top-frame th s1)))
(int-fix (! n0))))))

It may be read as follows. Let thread th of state sO satisfy the pre-conditions of
the fact method. Suppose the depth of the call stack exceeds 1 so that a caller is
known to be below the current frame. Run s0O with an arbitrary mono-threaded
schedule until it returns or the schedule is exhausted; call the final state si.
Suppose a return actually happened. Then the top of the operand stack in the
caller’s frame will contain (int-fix (! n0)).

Again, no instructions were counted and termination was not proved.

13 Conclusion

This paper has demonstrated that inductive assertion style proofs can be carried
out in an operational semantics framework, without producing a verification con-
dition generator or incurring proof obligations beyond those produced by such a
tool. The key insight is that assertions attached to cut points in a program can
be propagated by a tail-recursive function to create an alleged invariant. The
proof that the alleged invariant is invariant under the state transition function
produces the standard verification conditions. The invariance result can then
be traded in for a partial correctness result stated in terms of the operational
semantics, without requiring the construction of clocks or the counting of in-
structions.



19

References

1.

2.

10.

11.

12.

13.

R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second Edition.
Academic Press, New York, 1997.

R. Floyd. Assigning meanings to programs. In Mathematical Aspects of Computer
Science, Proceedings of Symposia in Applied Mathematics, volume XIX, pages 19—
32. American Mathematical Society, Providence, Rhode Island, 1967.

H. H. Goldstine and J von Neumann. Planning and coding problems for an elec-
tronic computing instrument. In John von Neumann, Collected Works, Volume V.
Pergamon Press, Oxford, 1961.

C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM,
12(10):576-583, 1969.

P. Homeier and D. Martin. A mechanically verified verification condition generator.
The Computer Journal, 38(2):131-141, July 1995.

M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, Boston, MA., 2000.

J. C. King. A Program Verifier. PhD thesis, Carnegie-Mellon University, 1969.
T. Lindholm and F. Yellin. The Java Virtual Machine Specification (Second Edi-
tion). Addison-Wesley, Boston, MA., 1999.

P. Manolios and J S. Moore. Partial functions in ACL2. Technical Report http: /-
/www.cs.utexas.edu/users/moore/publications/defpun/y -index.html, Com-
puter Sciences, University of Texas at Austin, 2001.

John McCarthy. Towards a mathematical science of computation. In Proceedings
of the Information Processing Cong. 62, pages 21-28, Munich, West Germany,
August 1962. North-Holland.

J S. Moore. An NQTHM formalization of a small machine. Technical
Report ftp://ftp.cs.utexas.edu/pub/boyer/ngthm/nqthm-1992/examples/basic/-
small-machine.events, Computational Logic, Inc., May 1991.

J S. Moore. Proving theorems about Java and the JVM with ACL2. In M. Broy,
editor, Lecture Notes of the Marktoberdorf 2002 Summer School. Springer, LNCS,
2003. http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-03.

J S. Moore and G. Porter. The Apprentice challenge. ACM TOPLAS, 24(3):1-24,
May 2002.



