Certifying Compositional Model
Checking Algorithms in ACL2

Sandip Ray
John Matthews
Mark Tuttle

ACL2 Workshop Presentation
July 14, 2003



Outline

Motivation and Goals
Technical Background
Comments on Our Work

Issues and Proposals



Model Checking

e A procedure for automatically deducing
temporal properties of reactive computer
systems.

— The temporal properties are specified in some
temporal logic (CTL, LTL etc.)

— A computer system 1s specified as a Kripke
Structure.

— The properties are verified by intelligent and
systematic graph search algorithms.



Model Checking: Good, Bad, & Ugly

e Good:

— If it works, model checking (unlike theorem
proving) 1s a push-button tool.

e Bad:

— If the system 1s too large, model checking
cannot be applied because of state explosion.

* Ugly

— The system (and/or property) then needs to be
suitably “abstracted” in order to use model
checking.



Compositional Model Checking

« Replace the original verification problems by one
or more “‘simpler” problems.

— Exploit characteristics of the system like symmetry,
cone of influence etc.

« Solve each simpler problem using model
checking.

Can be used to verify considerably larger systems.



Veritying Compositional Algorithms

* Implementations of compositional
algorithms are often complicated.

— How do we 1nsure that the algorithms
themselves are sound?

e A plausible solution:

— Use theorem proving to verify the algorithms.

e End Result;

— A verified tool that can be effectively used to
model check temporal properties of large
systems.



Our Work

e A feasibility test for verifying

compositional algorithms in

e (Goals:

— Implement and verify a simp
algorithm based on two simp]

ACL2.

e compositional
e reductions.

— Integrate the compositional algorithm with a
state-of-the-art model checker (Cadence SMV)

for efficiently solving the red

uced problems.



Outline

Motivation and Goals
Technical Background
Comments on Our Work

Issues and Proposals



How Do we Verity Compositional
Algorithms?

e Specify what it means to verify a temporal
property of a system model.

— Implement the semantics of model checking.

* Implement the compositional algorithms.

— Recall that a compositional algorithm decomposes a
verification problem into a number of “‘simpler”
problems.

e Use theorem proving to show that solving the
original problem 1s equivalent to solving all of the
stmpler problems (with respect to the semantics of
model checking).



System Models

e A System is modeled by:

— A collection of state variables. The states of
the system are defined as the set of all possible
assignments to these variables.

— A description of how the variables are updated
in the next state.

— A set of initial states corresponding to the
collection of possible evaluations at reset.



System Model Example

A very simple system:

Corresponding state
representation.

boolean v/, v2, v3;

Repeat forever in parallel

vl = v2 & V3
v2 = vl & v3;
end.

Initial states: <000, 111>

Q)O 001

O \ 010
111

011

100

101




Modeling Temporal Properties

e We use LTL formulas to model properties.
e An LTL formula is either:

— Some state variable or the constants True, False.
— A Boolean combination of LTL formulas.
— The application of a temporal operator G, F, X, U, or
W to an LTL formula.
 Example property for the simple system:
F(~v1)



Semantics of LTL

* The semantics of LTL 1s specified with respect to (infinite)
paths through the system model.

— V is true of some path if v 1s assigned to true in the first state of the
path. (True is true of every path.)

— F stands for eventually:
e (F p) is true of some path iff p is true of some suffix of the path.

— G stands for globally:
e (G p) is true of some path iff p is true of every suffix of the path.

e A formula is true of a model iff it 1s true of every path
through the model.

 We will call the pair <f, M> as a verification problem, if f
1s an LTL formula and M 1s a system model, and the
verification problem is satisfied if f1s true of M.



LTL Model Checking Example

JAn Example Property:
»>Eventually vl becomes ‘\
false. Ql =
-
110 011
dCounterexample!!! Lo oo
»Path through <111>

Our Simple Model



Compositional Algorithm

e Based on two simple reduction:
— Conjunctive reduction

— Cone of Influence Reduction



Conjunctive Reduction

e Replace the verification problem
— (f1 A f2) 1s true of M.

e With the two problems:
— {1 is true of M.
— f2 is true of M.



Cone of Influence Reduction

. Boolean v1, v2, v3, v4, v5, v6;
A Slmple SyStem Model Repeat forever in parallel:
vl = v2;
v2 = vl & Vv3;
vy = vl &Vv2;
vd = v5 & v3;
v = v4 & v6;
End.
A Simple LTL pl‘Operty (F (=~ v1)): vI will eventually become

False.

Boolean v1, v2, v3;

Repeat forever in parallel:

Cone of Influence ol
Reduction v2 = vl & v3;
End.




Soundness of Reductions

e Conjunctive Reduction

— The verification problem <(fI & f2), M> is
satisfied 1f and only if <f/, M> 1s satisfied and
<f2, M> 1s satisfied.

e Cone of Influence Reduction

— If f1s an LTL formula that refers only to the
variables in V, and C 1s the cone of influence of
V, then <f, M> 1s satisfied if and only if <f, N>
1s satistied, where N 1s the reduced model with
respect to C.



Compositional Algorithm

ad Input: A verification problem: <f, M>
d Algorithm:

» Apply conjunctive reduction to the formula, thus
producing a collection of “simpler” verification
problems: <fi, M>

» Apply cone of influence reduction to each of the
simpler problems thus producing problems: <fi,Mi>

d Soundness theorem:

» If f1s an LTL formula, and M 1s a model, then <f, M>
1s satisfied 1f and only 1f each <fi, Mi> 1s satisfied.

Note: Soundness of this algorithm follows from the
soundness of the reductions.



Outline

Motivation and Goals
Technical Background
Comments on Our Work

Issues and Proposals



Proving Compositional Algorithms

* The biggest stumbling block is the
definition of the semantics of LTL.

— LTL semantics are classically defined with
respect to infinite sequences (paths).

— The definitional equations require the use of
recursion and quantification.

e We could not define the classical semantics
of LTL in ACL2.



Eventually Periodic Paths

* These are special infinite paths eventually
with a finite prefix followed by infinite periodic
a finite cycle (which is repeated paih “h
forever).

e Known result:

— If an LTL f property does
not hold for some infinite
path in some model M, there
1s an eventually periodic
path in M for which f does
not hold.



Modeling Semantics of LTL 1n
ACL2

* Eventually periodic paths are finite structures.
— We can represent them as ACL2 objects.

— We define the semantics of LTL with respect to such
structures.

— We define the notion of a formula being true of a model
by quantifying over all eventually periodic paths
consistent with the model.

— The known result guarantees this 1s equivalent to the
standard semantics.



Issues with the Definition

 We verified our compositional algorithm to be
sound using this definition.

e Observations on the proof:

— The definition 1s more complicated to work with than
the traditional definition.

— The proofs of the reductions are very different from the
standard proofs.

— Some proofs, for example soundness of cone of
influence, get much more complicated than the
standard proofs.

Note: Details of the complications are in the paper.



Outline

Motivation and Goals
Technical Background
Comments on Our Work
Issues and Proposals



Principal Proposals

1. Addition of External Oracles

2. Reasoning about infinite sequences in
ACL2



External Oracles

 We proved that the original verification problem 1s
satisfied if and only if each of the “simpler” verification
problems 1s satisfied.

e For a particular verification problem we want:

— To use the algorithm to decompose it into a simpler problem.

— To use an efficient model checker to model check each of the
simpler problems.

e But we do not want to implement an efficient LTL model
checker in ACL2.

— There are trusted model checkers in the market to do the job.

— As long as we believe that the external checkers satisty the
semantics we provided in ACL2, we should be allowed to invoke
them.



Intermediate hack

Define an executable function ltl-hack with a
guard of T.

Define axiom positing ltl-hack is logically

equivalent to the logical definition of semantics of
LTL.

In the Lisp, replace the definition of ltl-hack to a
syscall that calls the external model checker
(Cadence SMV).

We have used the composite system to check
simple LTL properties of system models using our
compositional algorithm.



Proposal: External Oracles

* Note that if Itl-hack is not an LTL model checker
then the axiom posited makes the logic unsound.

— We have never used the logical body of Itl-hack, but a
:use hint expanding the body will enable you to prove
nil!

e Can ACL2 give us a better way of integrating an
external tool?

— It 1s important for ACL2 not to be monolithic.

— Other theorem provers like Isabelle have such
capability.



Infinite Sequences: Recursion with
Quantifiers

e To define the natural semantics of LTL, we need
quantification with recursion (plus some
axiomatization of infinite paths).

— ACL2 does not allow recursion with quantification.

— The addition of such facility violates “conservativity”
of the logic.

 We have claimed that having addition of such
facility 1s sound, though not conservative.

e Is it possible to reduce the restrictions imposed by
ACL2?

— Is such an extension possible with ACL2(R)?



Questions?



