Validation of a Parameterized Bus Architecture Model

Julien Schmaltz and Dominique Borrione
TIMA-VDS, Grenoble, France

July 3, 2003

Abstract

In this paper, we present an experiment in the modeling of the AMBA-AHB virtual com-
ponent and the proof of essential properties to validate the model. We prove the correctness
of communications for an arbitrary number of masters and slaves.

1 Introduction

The design of systems on chip (SoC) results in the integration of pre-designed blocks, called Virtual
Components (VC). In such a design flow, building the interconnection becomes the critical step,
especially for the verification. This new paradigm introduces two challenges for formal methods:
proving VCs and proving their composition. The bus, considered a VC [VSIO1] is a parameterized
structure, i.e. it is an unbounded system. In this paper, we present an experiment in the modeling
of the AMBA-AHB virtual component, and the proof of essential properties to validate the model.

Master Interface

GRANT

Arbiter

Figure 1: The Virtual Bus

Slave Interface

In this paper, we address the first design step. We start with the specification document written

with the traditional mixture of English sentences, drawings and timing diagrams. We manually
construct a formal model for each generic component and prove each one correct. Then, we model
their interconnections and prove the communication correct.
A typical bus [ARM99, IBM01] is composed of four elements: an address decoder, a bus arbiter,
slave (or target) and master (or initiator) interfaces (Fig 1). The protocol is mainly of master-
slave type, i.e. based on handshakes. The handshake (or peint to point connection) is the basic
communication scheme of the AHB bus. The next section presents our modeling and validation
approach on this basic scheme. Section 3 introduces the AHB bus. Section 4 shows the modeling
and the validation of the address decoder and the bus arbiter. In section 5, the principles exposed
in section 2 are applied to the AHB bus. Finally, conclusions are given in section 6.

ORDERS

MASTER SLAVE

RESULTS

Figure 2: Master/Slave interconnection scheme

Master Application Slave Application
Orders Results Orders Results
Requests
Master Interface Slave Interface
Responses

Figure 3: Point to point interconnection scheme

2 Principle of the communication

2.1 Master/Slave communication

Master/Slave communication is the basic protocol for hardware components. In this configuration,
drawn on Fig 2, masters send orders to slaves, which send results as answers. A communication is
always started by a master. Typically, masters are processors and slaves memories, so, orders are
typically read or write operations to a specific address or block of addresses; results are typically
data or a block of data and the slave status (e.g. no errors, global errors, not ready ...).

Let master M be a processor performing a divide operation between two integers and slave S be
a memory containing a set of integers. To perform the divide operation, M first reads the memory
to obtain the values of the operands, say a and b. Then, it uses a given algorithm divide_alg to
compute the integer division of @ by b. Finally, it writes the result, say ¢, in the memory. We
see here, as it was introduced in [RSV97], that the communication operations (read and write
orders) are orthogonal to the computation operation (the divide algorithm). These two kinds of
operations are separated in two types of components: the interfaces and the applications. The
point to point communication scheme with interfaces is drawn on Fig. 3. To make the difference
between interface-application and interface-interface communication clear, the former dialogue is
denoted by results and orders, the latter by requests and responses. We represent orders and results
by the following lists:

e order = (O L [D]), where O is an operation (i.e. read, write), L is a location and D is the
data to be written. [D] is optional for read operations.

e result = (status) or (status data)
Assume requests and responses are represented by the following list:

e request = (R/W addr [Data]), R/W = 1 means a read operation at the address addr is
requested, R/W = 0 means a write operation of Data at the address addr is requested, the
[Data] is optional for read operations.

e response = (status) or (status data)

We distinguish integers a and b from their memory addresses @a and @b. The master application
performs the following operations:

1. a = (read @a) then wait for a result
2. b = (read @b) then wait for a result
3. (write @a (divide_alg a b))

The communication events are the following. First, the master interface receives the read order
and produces the request (1 @a). The slave interface receives this request and transmits the order
(read @a) to the slave application. This application effectively reads its database and returns the
value a stored at the address @a through the result (OK a) which is successively transmitted back
to the master interface, and to the master application, which is now able to send the next order.
The events for the second read operation are similar. For the write operation, let us consider that
(divide_alg a b) = c. The master interface receives the write order and produces the request (0
@aq ¢). The slave interface receives this request and computes the order (write @a c). The result
(OK) follows the same way as the read result from the slave application to the master application.

Now that we have seen the information flow, we present our modeling approach in the next
section.

2.2 Functional modeling

Our formalization is functional, i.e. each component and each transfer is modeled by a function.
Time is abstracted away, and functional composition is used to express sequential events.

To formalize the previous example of the divide program, we start with the interfaces (Fig. 4).
The master interface has two inputs (the order and the response) and two outputs (the request
and the result), so it is represented by a function of two parameters returning two objects. Each
input and output is in fact a tuple. Practically, there are two ways to model a tuple: either we
consider the tuple as one input (or output), or each element of the tuple is one input (or output).
In the present paper, we consider that each element of a tuple is an input, because it is closer
to the hardware notion of signal. Concerning the master interface, each input is a formal of the
function and the output is a list of two lists. The first one contains the signals connected to the
slave interface, and the second one the signals connected to the master application. The definition
of this function is:

(defun master_interface (0 L D ST SD)
(if (equal 0 ’read)
(list (list 1 L D) (list SD ST))
(1ist (1ist 0 L D) (list SD ST))))

To make connection of functions clear, we define an accessor function for each output of the
interface. The accessors for the master interface are:

e (R/W x) = (nth 0 (nth 0 x))

e (ADDR x) = (nth 1 (nth 0 x))
e (Data x) = (nth 2 (nth 0 x))
(

e (S-master x) = (nth 1 (nth 1 x))

0 R/W

L Addr
D Data
Master Interface
S—master ST
D-master SD
R/W O-slave
Addr L—slave
D-slave
Data Slave Interface
ST ST
SD SD

Figure 4: Definition of master and slave interfaces

e (D-master x) = (nth 0 (nth 1 x))
The slave interface is drawn on Fig. 4 and modeled using the same approach:

(defun slave_interface (R/W Addr Data SD ST)
(if (equal R/W 1)
(list (list ’read Addr Data) (list SD ST))
(list (list ’write Addr Data) (list SD ST))))

The accessors are:

e (O-slave x) = (nth 0 (nth 0 x))

L-slave x) = (nth 1 (nth 0 x))

(

(D-slave x) = (nth 2 (nth 0 x))
(SD x) = (nth 0 (nth 1 x))
(

ST x) = (nth 1 (nth 1 x))

These two interfaces are composed together (i.e. the components are connected) yielding two
functions: one representing a transfer from the master interface to the slave interface, and the
other one a transfer from the slave interface to the master interface. A transfer from the master
interface to the slave interface is defined as the result of the slave_interface function applied to the
result of the master_interface function; so, by the following composition:

trans_-M _to_S (O L D) = slave_inter face o master_inter face (O L D) 1)

which gives the following ACL2 function:

(defun trans_M_to_S (0 L D SD ST)
(slave_interface ; R/W signal
(R/W (master_interface 0 L. D SD ST))

; ADDR signal

(ADDR (master_interface 0 L D SD ST))

; Data signal

(Data (master_interface 0 L D SD ST))

; resulting Data(D) and Status (S) given by the slave application
SD ST))

Similarly, a transfer from the slave interface to the master interface is defined as the composition:
trans_S_to-M (D S) = master_inter face o slave_inter face (D S) (2)

which gives the following function:

(defun trans_S_to_M (0 L D SD ST)
(master_interface 0 L D ; not considered
; to select the data of the respomnse
(SD (slave_interface 0 L D SD ST))
; to select the status of response
(ST (slave_interface 0 L D SD ST))
))

The slave application is a memory, and we model it by a list named memo. The read and write
operations are performed through calls of the nth and put-nth ACL2 functions. The function
representing the slave application is:

(defun slave_application (0 L D memo)
(if (equal 0 ’read)
(list (nth L memo) ’0K)
(1ist (put-nth L D memo) ’0K))); write order

Without the slave application, it is not possible to compose Equations 1 and 2. But, using the
slave_application function, we can define a transfer function modeling the complete execution of
an order, i.e. transmitting the order and getting the result back. A transfer is represented by the
following composition:

trans_order (O L D) = trans_S_to_M o slave_application o trans_-M to.S (O L D) (3)

which can be paraphrased as follows. First, transmit the order to the slave application, then
effectively compute the corresponding operation and finally transmit the result to the master
application. We get the ACL2 function:

(defun trans_order (0 L D memo)
(trans_S_to_M nil nil nil
(nth 0 ; to select the returned data
(slave_application
; operation O
(0-slave (trans_M_to_S 0 L D nil nil))
; location L
(L-slave (trans_M_to_S 0 L D nil nil))
; data D
(D-slave (trans_M_to_S 0 L D nil nil))
memo))
(nth 1 ; to select the returned status

(slave_application
; operation 0
(0-slave (trans_M_to_S 0 L D nil nil))
; location L
(L-slave (trans_M_to_S 0 L D nil nil))
; data D
(D-slave (trans_M_to_S 0 L D nil nil))
memo)))))

Suppose (divide_alg a b) computes the division of a by b, the master function is:

(defun master_function (a_address b_address c_address memo)
(trans_order ’write c_address
(divide_alg (D-master (trans_order ’read a_address nil memo))
(D-master (trans_order ’read b_address nil memo)))
memo))

which completes the model of the point to point connection.

2.3 Proving essential properties

As for any verification process, we need to define a reference. For the point to point communication
scheme, it is a direct communication between master and slave applications (see Fig. 2, page 2).
The underlying principle is that the introduction of interfaces do not modify the communication
function between the applications. With no interfaces, if a master application sends a (read L d)
or a (write L D) order, the slave application receives a (read L D) or a (write L D) order. With
interfaces, the trans_M_to_S functions, modeling the order transmission, applied to a (read L D) or
a (write L D) order should return a (read L D) or a (write L D) order. Theorems 1 and 2 below,
proven by the definition of master_interface and slave_interface state it.

Theorem 1 (Correctness of the read transmission)

(defthm trans_M_to_S_read
(implies (equal 0 ’read)
(and (equal (0-slave (trans_M_to_S 0 L D SD ST)) ’read)
(equal (L-slave (trans_M_to_S 0O L D SD ST)) L)
(equal (D-slave (trans_M_to_S 0 L D SD ST)) D))))

Theorem 2 (Correctness of the write transmission)

(defthm trans_M_to_S_write
(implies (equal 0 ’write)
(and (equal (0-slave (trans_M_to_S 0 L D SD ST)) ’write)
(equal (L-slave (trans_M_to_S O L D SD ST)) L)
(equal (D-slave (trans_M_to_S 0 L D SD ST)) D))))

Let us consider the function trans_S_to_M that transmits a result. Because the result has the
same structure for read and write operation, there is only one theorem, proven using the definition
of master_interface and slave_interface. This theorem states that if a slave application sends a (RD
RS) result to the slave interface, the master application receives the same (RD RS) result.

Theorem 3 (Correctness of the result transmission)

(defthm trans_S_to_M_thm
(and (equal (D-master (trans_S_to_ M 0 L D
(equal (S-master (trans_S_tom 0 L D

D ST)) SD)
D ST)) ST)))

0 n

These three theorems prove that the communication between the applications has the same
behavior with and without the interfaces.
Let us now consider the trans_order function. As there are two different operations, we have two
theorems. The first one proves that the read operation behaves correctly, the second one proves
the write operation. The first theorem states that the data returned by a call to trans_order(read
L D memo) is equal to a direct read (a call of nth) in memo:

Theorem 4 (Correctness of a read order)

(defthm trans_order_read
(implies (equal 0 ‘read)
(equal (D-master (trans_order 0 L D memo))
(nth L memo)))
:hints (("GOAL" :in-theory (disable nth D-master))))

Proof. Proof is obtained by theorems 1, 2, 3 and the definition rule slave_application. The hint
is here of importance, because we consider (nth L memo) as a “token” and we do not want it be
expanded. Q.E.D.

The second theorem (proven like the one above) states that a write order is equal to a “put-nth”
on memo:

Theorem 5 (Correctness of a write order)

(defthm trans_order_write
(implies (equal 0 ’write)
(equal (D-master (trans_order 0 L D memo))
(put-nth L D memo)))
:hints (("GOAL" :in-theory (disable nth D-master))))

If the master_application function is correct, we should prove, once memo has been modified by a
call of master_application, that the data located at c_address in memo is equal to the division of
the integers located at a_address and b_address in memo. So, we prove the theorem below.

Theorem 6 (Correctness of the master application)

(defthm divide_thm
(implies (and (< c_address (len memo))
(< 0 c_address))
(equal
(nth c_address
(D-master
(master_function a_address b_address c_address memo)))
(floor (nth a_address memo) (nth b_address memo))))
:hints (("GOAL" :in-theory (disable D-master floor nth Data))))

Proof. Obtained by theorem 1, 2 and the “nth-put-nth” lemma of the list-defthms book. Q.E.D.

Slave Application |

Slave Application k
HSEL(K) Address Decoder HSEL()
Slave Interface k Slave Interface |
HADDR
HADDR HRDATA HWDATA HADDR | HRDATA HWDATA
Address Bus
Read Bus
Write Bus
HWDATA | HRDATA HADDR HWDATA | HRDATA HADDR
HADDR
Master Interfacei HGRANT() HGRANT() Master Interfacej
HREQ(i) Bus Arbiter HREQ()

Master Application i

Master Application j

Figure 5: Organization of the AMBA AHB architecture

3 The AMBA AHB bus system

Arm processors are widely used in SoCs and embedded systems, so is the Advanced Microcontroller
Bus Architecture (AMBA) and particurlarly the Advanced High-performance Bus (AHB). Its global
structure is drawn on Fig. 5.

The AHB on chip bus allows the interconnection of n masters (typically: processing units) and
m slaves (typically: memory units), where n and m are parameters. There are three different
buses: HRDATA conveying data to be read, HWDATA for data to be written, and HADDR
for the addresses. The communication involves four components:

1. a decoder: it receives an address and activates the corresponding slave

2. an arbiter: it reveives requests and grants the bus to a unique master
3. master interfaces: initiate transfers
4. slave interfaces: answer to master requests
HBUSREQ
HADDR AHB HSEL HADDR AHB HGRANT
— 4 A .
Decoder
Arbiter
HRESET
HCLOCK

Figure 6: (Simplified) Schemes of the decoder and the arbiter

The decoder (Fig 6) is used to select the slave that owns the required data. Address decoding
depends on memory organization, and details about it are given in section 4.1. The decoder

activates a slave x by setting the x’th bit of the HSEL signal to 1 and the others to 0.

The role of the arbiter (Fig 6) is to grant bus access to one master requesting it. The arbiter is
unique in a given architecture and uses a priority scheme to select a master. This algorithm is not
specified in [ARM99] but must obey some rules. The most important is to preserve the mutual
exclusion of bus accesses. The AHB architecture is not a tri-states bus, so a default master is
granted when no master requests the bus. We select master number 0. The slave interface (Fig 7)

HGRANTX HBUSREQx HSELx
HCLOCK SE
R HWRITE HRESET |
AHB | HWRITE AHB
HRESET | HeLocK
Master HADDR -7 HRDATA
HWRITE Save | |, |
Interface HWDATA
HWDATA
HRDATA " ey meee
= HADDR
P E—

Figure 7: (Simplified) Schemes of the master and slave interfaces

uses the HSELx signal to determine if it is active or not. If HSELx is high, the slave answers
the master read or write request in one cycle, or it splits the transfer. The master interface (Fig
7) produces all the signals needed for a transfer.

4 Memory and bus arbitration

In this section, we formalize the two main components of the bus protocol (the address decoder and
the bus arbiter) and we prove them correct with respect to [ARM99]. As we deal with functional
models, reset and clock signals are ignored in our formal representation.

4.1 Address decoding

Let Card_S be the number of slaves, a generic parameter of the decoder of type natural. The
address decoding corresponds to the selection of an element of a set. The decoder function asso-
ciates a set of addresses to a slave. As we abstract addresses to naturals, the input domain of the
decoder function is the set of naturals. The output domain is the interval [0, Card.S — 1]. S;
denotes the slave number i,7 € [0, Card.S — 1].

Each slave is connected to a memory of MEM _SIZE addresses, and the global system memory is
the product Card_S x MEM_SIZE. During transfers, the master puts the global address, which
ranges from 0 to Card.S x MEM _SIZE — 1, on the HADDR bus, and the slave selected by
the decoder reads or writes the data to its local address UNADDR. A data has consequently two
addresses - a global and a local address- related by the following equation:

UNADDR = HADDR mod MEM _SIZE 4)
The slave possessing the data at the HADDR address is S;, where i is computed by the equation:
. HADDR
P = - (5)
MEM _SIZE

The decoder is modeled by the functions select(Card_S SEL) and decoder(MEM_SIZE, Card_S,
ADDR) below:

(defun select (Card_S SEL)
(cond ((not (integerp Card_S)) nil)
((<= Card_S 0) nil)
((equal SEL 0)
(cons 1 (select (1- Card_S) (1- SEL))))
(t
(cons 0 (select (1- Card_S) (1- SEL))))))

(defun decoder (MEM_SIZE Card_S HADDR)
(select Card_S (floor HADDR MEM_SIZE)))

Function select is recursive over Card_S, the number of list elements. It returns the empty list
if Card_S is not a natural integer. Otherwise, it concatenates 1 (if sel = 0) or 0 (if sel # 0) to the
list resulting from the recursive call of select over Card_S — 1 and sel — 1. Thus select constructs
a list of Card_S elements, all equal to 0 except the sel’th one, provided 0 < sel < Card_S.
The main property to prove on these functions is that they select only one slave possessing the
desired data. Clearly, once the proof is made on select, the proof on decoder is straightforward due
to equation 5. We prove the following theorems.

Theorem 7 (Selection of the right slave)

(defthm ith_select_=_1
(implies (and (integerp i) (integerp Card_S)
(>=10) (> Card_S i))
(equal (nth i (select Card_S i)) 1)))

Proof. We first prove a lemma stating the property is true if 4 = 0. This lemma could be
avoided but eases the proof. ACL2 proves the theorem automatically by induction over Card.S
and i. Q.E.D.

Theorem 8 (Uniqueness of the selection)

(defthm pth_select_=_0
(implies (and (integerp p) (integerp Card_S)
(<= 0 p) (< p Card_S)
(not (equal p i)))
(equal (nth p (select Card_S i)) 0))
:hints (("GOAL"
:induct (function_hint_th2_select p Card_S i))))

Proof. As for theorem 1, we prove a lemma stating the first element of select is 0 when ¢ # 0.
We prove another lemma stating select returns a cons-pair. The induction scheme suggested by
(select Card_S i) is over Card_S and i. Here, we need an induction hypothesis on Card_S, i and
p. We define a function called function_hint_th2_select that suggests the needed induction scheme
and ACL2 proves the theorem automatically. Q.E.D.

4.2 Bus arbitration

The bus arbiter determines which master should be granted bus access, using a priority scheme
modeled by a priority matrix (Fig 8). The number P of lines sets the number of priority levels and
the number N of columns is the number of masters having the same priority. Lines and columns
are numbered from 0. The matrix elements correspond to a single master, and the master number

10

Master Number O
Default Master
Highest Priority

Master Number P*N—1
Least Priority

Figure 8: The matrix modeling the priority scheme

is computed from line 1 and column ¢ by: master num = I*N + ¢. Master number 0, the default
master, has the highest priority. The input domain of the arbiter function is the set of NxP bit
matrices MREQ representing the master requests. The output domain is the set of bit vectors of
length NxP where only one bit is 1. The function uses the following algorithm to select the master
that should be granted bus access:

o determine the first line RLINE containing at least one request (Stage_P)

e determine the next requesting master to be granted the bus, according to a round robin
scheme on the line (round_robin)

e compute the number of this master master_num from the line number and build the output
list HGRANT where bit number master_num is 1 (master_num and arbiter)

In order to model these functions we need to define some predicates. The predicate no_requestp_
matriz(MREQ) recognizes a matrix containing no request, i.e. all its elements are 0. The predicate
no_requestp(L) recognizes a line with no request. So, the first line containing at least one request
is the first element of the priority matrix MREQ such that no_requestp(car MREQ) does not hold.
The number of this stage is computed by the function stage_P(MREQ) below:

(defun stage_P (MREQ) ; returns the line number
(cond ((endp MREQR) 0) ; for the highest priority request
((no_requestp_matrix MREQ) 0) ; 1f empty list or no request returns 0
((not (no_requestp (car MREQ))) 0); we count the number of stages
(t ; containing no request until we meet
(+ 1 (stage_P (cdr MREQ)))))) ; a stage with at least one request

We consider the function correct if prior stages to the returned one contain no request, and if the
returned stage in non-empty. We prove the following theorems:

Theorem 9 (Respect of the priority scheme)

(defthm prior_scheme ; we prove that each stage j prior
(implies (and (equal (stage_P MREQ) i) ; to the returned one i contains
(< ji) k=03 ; no request

(no_requestp (nth j MREQ))))

Proof. The proof is made by induction over j and MREQ. The proof is fully automatic and ACL2
uses type-prescription rules of the functions no_requestp, no_requestp_matriz and stage_P. Q.E.D.

Theorem 10 (Chosen stage is not empty, provided there is at least one request)

11

Start End

Last granted position

Figure 9: Circular traversal of a line of the priority matrix

(defthm chosen_stage_not_empty
(implies (and (equal (stage_P MREQR) i) (not (no_requestp_matrix MREQ)))
(not (no_requestp (nth i MREQ)))))

Proof. The proof is made by induction over MREQ and uses the same type prescriptions rules as
for theorem 9. Q.E.D.

The next important step is the computation of the next master of the returned stage. On
a given line, masters have the same priority, and the access policy is “round robin”. A circular
traversal of the stage is performed from the last granted position to the next requested position
(Fig. 9).
We split a stage after the last granted position; if the end part contains at least one request, the
circular traversal starts with the first element of this part. Otherwise, the traversal begins with the
first element of the stage. The “start” part is obtained with the function firstn(n L) that returns
the first n elements (without the n’th) of L; the “end” part is obtained with the function lastn(n
L) that returns the last n elements (with the n’th) of L. We define the function find_next_1(L) that
returns the position (starting from 0 and counted from the first element of L) of the first 1 met
in L. The computation of the next master in a given stage RLINE is represented by the following
function:

(defun round_robin (RLINE Last_Granted); RLINE is (nth (stage_P MREQ))
(cond ((no_requestp RLINE) 0) ; if the end part of the line contains
((no_requestp (lastn (1+ Last_Granted) RLINE)); no request, find_next_one
(find_next_1 (firstn (1+ Last_Granted) RLINE))); computes the position
(t ; of the next 1 in the first part of the line
(+ (1+ Last_Granted) ; else we proceed in the last part
(find_next_1 (lastn (1+ Last_Granted) RLINE))))))

The main property that should hold is that there is effectively a round robin. In particular, assume
the master (number k) which was last granted access to the bus still requests access the next time
the line is selected, and one or more other requests are also present on that line, then the next bus
access is not granted to master number k. This is expressed by the following theorem:

Theorem 11 (No Deadlock)

(defthm no_deadlock

(implies (and (integerp i) (<= 0 i)

(equal (nth Last_Granted RLINE) 1) (list_of_1_and_O RLINE)

(not (equal Last_granted i)))

(implies (equal (nth i RLINE) 1)
(not (equal (round_robin RLINE Last_Granted) Last_Granted))))
:hints (("GOAL" :use (:instance lemmal_no_deadlock)
:in-theory (disable lemmal_no_deadlock firstn)))

12

:rule-classes ((:rewrite :match-free :all))

)

Proof. The definition of round_robin suggests three cases. The hypothesis (equal (nth i RLINE)
1) is in contradiction with the first one. The third case is obvious. The remaining case is proven by
the lemma used in the hint. This lemma proves the theorem if i is lower than 1 + Last_Granted.
Q.E.D.
Now, let E be the stage number, N its length and New the position in the stage of the new
bus owner. The master M; should be granted bus access, where 7 is computed according to the
following equation:

t = New + N x E (6)

This is done by the function below:

(defun master_num (MREQ N Last_Granted)
(+ (* (stage_P MREQ) N)
(round_robin (nth (stage_P MREQ) MREQ) Last_Granted)))

The last step is to build the output vector HGRANT that selects the right master. This is
done using the function select defined for the decoder:

(defun arbiter (N P MREQ Last_Granted)
(select (x N P) (master_num MREQ N Last_Granted)))

On this function, we prove the uniqueness and the correctness of the selection by proving two
theorems similar to those proven on the select function. For instance, the theorem similar to
theorem 7 is :

Theorem 12 (Selection of the right master)

(defthm nth_arbiter_=_1
(implies (and (integerp N) (< 0 N) ; there is at least one master unit

(integerp Last_Granted) (<= 0 Last_granted)
(integerp P)
; P is the number of line in the priority matrix
(equal P (len MREQ))
; N the number of elements of each line
(equal (len (car MREQR)) N)
(not (no_requestp_matrix MREQ)) ; there is at least one request
(uniform_listp MREQ) ; each line of MREQ has the same length
; the last_granted master has a valid number
(< (1+ Last_granted) N)
(consp MREQR)
(consp (cdr MREQR))
; the returned line contains bits
(l1ist_of_1_and_0 (nth (stage_P MREQ) MREQ))

(equal (nth (master_num MREQ N Last_granted)
(arbiter N P MREQ Last_granted)) 1))
:hints (("GDAL" :use (:instance master_num_<_P*N)
:do-not-induct t
:in-theory (disable master_num_<_P*N
DISTRIBUTIVITY
)DD))

13

Proof. We prove that master_num returns a positive integer less than the number of existing
master units P X N, then the hypotheses of theorem 7 can be relieved. Q.E.D.

5 Validation of the communication

Any communication on the bus takes place between one master and one slave. The proofs of
correctness of the decoder and the arbiter mean that these two components are correctly chosen
among an arbitrary number of units. Here, correctly means that the master involved in the
communication owns the bus, and the slave the required locations of data. So, we reduce the bus
communications to a “generic” point to point scheme and are back to the case exposed in section
2. So, to have a similar model, we add the signals between interfaces and applications (orders
and results) to the AHB interfaces. The signals O, L, D, D-master are added to the AHB master
interface, and the signals O-slave, D-slave, L-slave, SD are added to the AHB slave interface. The
signals between AHB interfaces are those of section 2, but with new names, which are:

e R/W = HWRITE
¢ ADDR = HADDR
e Data = HWDATA
e ST is not used anymore (always “OK” in the modeled slave application)

e SD = HRDATA

5.1 Interfaces modeling

The slave interface is active when the HSEL signal is high. The slave interface function returns a
list of two lists of signals if HSEL is equal to 1, and simply nil otherwise. The first list contains the
data sent to the master application as a response. As the status of our slave application (presented
in the second section) is always “OK” we do not model it. The second list contains the signals
given by the master application and sent to the slave application. So, the interface function is very
simple; in fact its task is to transfer signals and to compute the local address. The ACL2 code of
the slave interface function is:

(defun slave_interface (HSEL HWRITE HADDR HWDATA SD MEM_SIZE)
(if (equal HSEL 1)
(1ist (list (if (equal HWRITE 0)
’read
‘write)
(mod HADDR MEM_SIZE) HWDATA)
(1ist SD))

nil))
As in section 2, we define accessors for the slave interface outputs:
e (O-slave x) = (nth 0 (nth 0 x))
o (L-slave x) = (nth 1 (nth 0 x))
e (D-slave x) = (nth 2 (nth 0 x))

14

e (HRDATA x) = (nth 0 (nth 1 x))

The master interface function is active when the HGRANT signal is high. The master interface
function returns a list of two lists of signals if HGRANT is equal to 1, and nil otherwise. The
function is very simple; its task is to transmit signals and to assign the HWRITE signal to 1 in
case of a read transfer and to 0 in case of a write transfer. The ACL2 code of the master interface
function is given below:

(defun master_interface (0 L D HRDATA HGRANT)
(if (equal HGRANT 1)
(1ist (list (if (equal O ’Read)
1
0)
L
D)
(1ist HRDATA))
nil))

We define the following accessors for the master interface outputs:
e (HWRITE x) = (nth 0 (nth 0 x))
e (HADDR x) = (nth 1 (nth 0 x))
e (HWDATA x) = (nth 2 (nth 0 x))
e (D-master x) = (nth 0 (nth 1 x))

5.2 Transfers modeling

For the AHB bus, transfers are modeled using compositions similar to those proposed in section
2. The principal difference consists in the addition of the decoder and the arbiter, and thus of the
HSEL and HGRANT signals. In fact, this just adds one input to the master interface function
and one input to the slave interface function. The ACL2 code of the trans_M_to_S function is:

(1) (defun trans_M_to_S (0 L D N Card_S P Last_Granted MREQ Slave_Number
(2) SD MEM_SIZE)

(3) (slave_interface

(4) (nth Slave_Number

(5) (decoder MEM_SIZE Card_S

(6) (HADDR

(7) (Master_interface 0 L D SD

(8) (nth (master_num MREQ N Last_Granted)

9 (arbiter N P MREQ Last_Granted))))))

(10) (HWRITE

(11) (Master_interface 0 L D SD

(12) (nth (master_num MREQ N Last_Granted)
(13) (arbiter N P MREQ Last_Granted))))
(14) (HADDR

(15) (Master_interface 0 L D SD

(16) (nth (master_num MREQ N Last_Granted)
a7 (arbiter N P MREQ Last_Granted))))
(18) (HWDATA

15

(19) (Master_interface 0 L D SD

(20) (nth (master_num MREQ N Last_Granted)
(21) (arbiter N P MREQ Last_Granted))))
(22) SD MEM_SIZE))

On lines (3) to (9), the slave interface is connected (through the HSEL signal) to the decoder, which
is itself connected - on lines (6) to (9) - to the master interface (through the HADDR signal). The
master interface is connected - on lines (7) to (9), (12) and (13), (16) and (17), (19) and (20) - to
the arbiter (through the HGRANT signal). On lines (10) to (21), the master interface is connected
to the slave interface. Finally, on line (22) we have the data SD given by the slave application and
a parameter (the size of the slave memory).

The ACL2 code of the trans_S_to_M function is:

(1) (defun trans_S_to_M (0 L D SD MEM_SIZE Card_S MREQ N P

(2) HWRITE HADDR HWDATA Slave_Number Last_granted)
(3) (master_interface 0 L D ;not considered in slave to master transfers
(4) (HRDATA

(5) (slave_interface

(6) (nth Slave_Number

)] (decoder MEM_SIZE Card_S L))

(8) HWRITE HADDR HWDATA ; not considered

€) SD

(10) MEM_SIZE))

(1) (nth (master_num MREQ N Last_Granted)

(12) (arbiter N P MREQ Last_Granted))))

On lines (4) to (6) the HRDATA output of the slave interface is connected to the master interface.
The signals O,L,D, HWRITE, HADDR and HWDATA are used in transfers from the master to
the slave interface, but they are not involved in transfers from the slave to the master interface,
and can therefore be set to a constant value, 'undef, when one calls trans_S_to_M (see for instance
theorem 13).

5.3 Transfers validation

To validate the transfers we would like to establish theorems close to theorems 1, 2 and 3 of section
2. The first theorem states that a read order emitted from the master application is correclty
received by the slave application. The SD input of trans_M_to_S has no importance in this way,
and is set to ‘undef.

Theorem 13 (Correctness of the read transmission)

(defthm trans_M_to_S_thm
(implies (and

; P is the number of priority level(s)
(integerp P) (equal P (len MREQ))
; N is the length of each level
(equal (len (car MREQR)) N)
; at least one master
(integerp N) (< 0 N)
; each level has the same length
(uniform_listp MREQ)
; the last owner has a valid number

16

(integerp Last_Granted) (<= 0 Last_Granted)
(< (+ 1 Last_granted) N)
; at least one request
(not (no_requestp_matrix MREQ))
(consp MREQ) (consp (cdr MREQ))
; each level is a line of bits
(list_of_1_and_O0 (nth (stage_P MREQ) MREQ))
; at least one slave unit
(integerp Card_S) (< 0 Card_S)
; L is a valid address
(integerp L) (<= 0 L) (< L (* Card_S MEM_SIZE))
; the size of the slave memory is at least one
(integerp MEM_SIZE) (< O MEM_SIZE)
; the slave is active
(equal Slave_Number (floor L MEM_SIZE)) ; *hypothesisx
)
(and (equal (0O-slave
(trans_M_to_S 0 L. D N Card_S P Last_Granted MREQ
Slave_Number ’undef MEM_SIZE))
’read)
(equal (L-slave
(trans_M_to_S 0 L D N Card_S P Last_Granted MREQ
Slave_Number ’undef MEM_SIZE))
(mod L MEM_SIZE))
(equal (D-slave
(trans_M_to_S O L D N Card_S P Last_Granted MREQ
Slave_Number ’undef MEM_SIZE))
D))))

Proof. In the considered bus architecture, every transfer takes place between one master and
one slave, so, we reduce the communication between an arbitrary number of masters and slaves
to a point to point connection between a well chosen master and a well chosen slave. These
assumptions are expressed through the *hypothesis* marked above and in lines 8-9, 12-13, 16-17
and 20-21 of the trans_M_to_S function. The *hypothesis* relieves the hypotheses of theorem 7 of
section 4.1 and we obtain , once trans-M_to_S has been expanded, that (nth slave_number (decoder
MEM_SIZE Card.S L)) = 1, i.e. the slave unit is active. When we connect the arbiter, the call
(nth (master-num MREQ N Last_Granted) (arbiter N P ...) in trans_M_to_S (see definition on
page 16) and the hypotheses of the above theorems induce that theorem 9 holds, i.e. the master
owns the bus. The communication is now reduced to a simple communication between the two
interfaces and by the functions definitions we prove the theorem. Q.E.D.

The next theorem is proven in a similar way, and deals with a write order:

Theorem 14 (Correctness of the write transmission)

(defthm trans_M_to_S_write
(implies (and ...
same hypotheses as for trans_M_to_S_read
except that the order is write:
(equal 0 ’write)
)
(and (equal (0-slave

17

(trans_M_to_S 0O L D N Card_S P Last_Granted MREQ
Slave_Number ’undef MEM_SIZE))
‘write)
(equal (L-slave
(trans_M_to_S O L D N Card_S P Last_Granted MREQ
Slave_Number ’undef MEM_SIZE))
(mod L MEM_SIZE))
(equal (D-slave
(trans_M_to_S O L D N Card_S P Last_Granted MREQ
Slave_Number ’undef MEM_SIZE))
D))

Finally, we prove:
Theorem 15 (Correctness of the result transmission)

(defthm trans_S_to_M_thm
(implies (and ...
hypotheses of the previous theorems
without the one on 0

)

(equal (D-master
(trans_S_to_M 0 L D SD MEM_SIZE Card_S MREQ N P HWRITE HADDR
HWDATA Slave_Number Last_Granted))
SD)))

We have proven theorems on a structure containing an arbitrary number of interfaces, one
decoder and one arbiter. We can go a little further because every slave application is a memory. A
memory is modeled by the following function (which is very close to the one presented in section
2.2):

(defun slave_memory (MEMO O UNADDR D)
(cond ((equal 0 ’write)
(1ist (put-nth UNADDR D MEMO) D))
((equal 0 ’read)
(list MEMO (nth UNADDR MEMO0)))))

Using Equation (3), we model a single transfer as follows:

(defun single_transfer (0 L D N P Card_S Last_Granted MREQ Slave_Number
MEM_SIZE MEMO)

(1ist
(trans_S_to_ M O L D
(nth 1
(slave_memory MEMO
(0-slave
(trans_M_to_S 0 L D N Card_S P Last_Granted
MREQ Slave_Number ’undef MEM_SIZE))
(L-slave

(trans_M_to_S 0O L D N Card_S P Last_Granted

18

MREQ Slave_Number ’undef MEM_SIZE))
(D-slave
(trans_M_to_S O L D N Card_S P Last_Granted
MREQ Slave_Number ’undef MEM_SIZE))))
MEM_SIZE Card_S MREQ N P O L D
Slave_Number Last_Granted)
(nth 0
(slave_memory MEMO
(0-slave
(trans_M_to_S O L D N Card_S P Last_Granted
MREQ Slave_Number ’undef MEM_SIZE))
(L-slave
(trans_M_to_S 0 L D N Card_S P Last_Granted
MREQ Slave_Number ’undef MEM_SIZE))
(D-slave
(trans_M_to_S O L D N Card_S P Last_Granted
MREQ Slave_Number ’undef MEM_SIZE))))))

The first part of the list represents the signals received by the master application. The second
returns the modified memory and is useful to reason on the memory.

On this function, we first prove that a read operation returns the same data as a direct read in the
memory (through a call of nth):

Theorem 16 (Correctness of a read operation)

(defthm single_read_transfer

(implies (and ...
hypotheses of trans_S_to_M_thm

(equal 0 ’READ)
)
(equal (D-Master
(nth 0
(single_transfer 0 L D N Card_S P Last_Granted MREQ
Slave_Number MEM_SIZE MEMO0)))
(nth (mod L MEM_SIZE) MEMO0))))

Then we prove that if we read the memory after a write operation of a given data, we obtain this
data:

Theorem 17 (Correctness of a write operation)

(defthm single_write_transfer

(implies (and (equal 0 ’WRITE)

hypotheses of trans_S_to_M_thm

; the size of MEMO is MEM_SIZe
(equal (len MEMO) MEM_SIZE)

)
(equal (nth (mod L MEM_SIZE)
(nth 1

19

(single_transfer 0 L D N Card_S P Last_Granted MREQ
Slave_Number MEM_SIZE MEMO)))
D)))

This concludes the proof of our model single_transfer. The proof of this function could now be
used to prove correct master applications, like the divide program of section 2.

6 Conclusion

The formalization involves around twenty functions, more than sixty theorems and the total proof
time, on a 400 Mhz bi-processors SUN server, is about thirty seconds. As we model the bus using
lists, we use the books list-defuns and list-defthms. We also use the books arithmetic/top and
floor-mod. More details on the AMBA bus and its functional model can be found in [SB03], with
some differences in the details of the ACL2 code, which has since been clarified and extended.
This work should be extended to capture pipelined and out-of-order transfers. Finally, we aim at
verifying hardware designs and these should be tested against our formal specification.

References

[ARM99] ARM. AMBA Specification, 1999.
[IBMO1] IBM. 128-bit Processor Local Bus, Architecture Specifications Version 4.4, 2001.

[RSV97] James A. Rowson and Alberto Sangiovanni-Vincentelli. Interface-Based Design. In
Design Automation Conference, pages 178-183, 1997.

[SB03] J. Schmaltz and D. Borrione. Formalization and Verification of the AMBA-AHB Com-
munication Architecture Using the ACL2 Theorem Prover. March 2003. Research Report
TIMA-RR-03/03-01-FR, http://tima.imag.fr/publications/files/rr/fva_170.pdf(A short
version of this report was published in the proceedings of the IEEE Workshop on Design
and Diagnostics of Electronic Circuits and Systems (DDECS’03), pp 93-100, Poznan,
April 2003).

[VSIO1] VSI Alliance. Virtual Component Interface Standard Version 2 (OCB 2 2.0), April 2001.

20

