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Abstract
Liveness (or progress) proofs about reactive systems generally require assumptions ensuring the fair
selection of particular components of the input to the reactive systems. We document our approach to
defining these fair environments and their use in liveness proofs in the theorem prover ACL2.

1 Introduction

The term reactive system generally refers to any system (or design, program, etc.) which functions via an
ongoing interaction with some environment. In ACL2, reactive systems are commonly defined by so-called
step functions which are binary functions — (step s i) — that take the current state s of the system and an
input i from the environment and return the next state of the system. A behavior or run of such a system
is defined to be an infinite sequence of states (i.e. a function mapping naturals to states) as follows:

(defun run (k) (if (zp k) (init) (let ((k (1- k))) (step (run k) (env k)))))

where (init) is some defined initial state of the system and (env k) is an arbitrary (e.g. defined via
encapsulate) infinite sequence of inputs which provides the environment’s input at each natural time k.

The specifications of correct behavior for reactive systems generally consist of two types of properties,
safety (i.e. nothing “bad” happens) and liveness (i.e. something “good” eventually happens)[1]. For example,
if the system processed database transactions, then a safety property may state that “the results of each
transaction is valid” where a liveness property may state that “every transaction eventually completes”.
In ACL2, proving safety properties generally involves proving an invariant of the reachable states which
correlates to proving the theorem:

(defthm safety (not (bad (run k)))

where bad is a predicate defining illegal states (e.g. invalid transaction results). For liveness properties,
the proof requirement is to show that eventually something “good” occurs, which in ACL2 is encoded by a
defun-sk,

(defun-sk eventually-good (x) (exists (y) (and (time>= y x) (good (rum y)))))
(defthm liveness (eventually-good k))

where good is a predicate defining a “good” event occurring at the state (e.g. the completion of a transaction).
The theorem liveness states that at all times k, there exists some future (natural) time k+ where (good
(run k+)).

In the course of proving liveness properties, the need frequently arises to assume that the inputs to the
system (or some component of the input to the system) is selected fairly. For example, in many cases, the
system is an asynchronous composition of some number of component processes (i.e. the state of the system
is a list of component process states). The step function for this type of system might be defined as follows:

1Because we need to state assumptions about the inputs selected by the environment, we need to model the environment
via a function env. This necessity is unfortunate since it allows the possibility for a step function to “cheat” by calling env to
peek at future inputs from the environment which is in violation of the modeling of nondeterministic choice by an environment.
In practice, this can be avoided by requiring that the step function be defined before the env function — although we did not
take this approach in the supporting materials for didactic reasons.



(defun select (i) (nfix (car i)))
(defun step (s i) (update-nth (select i) (step-process (nth (select i) s) s i) s))

where step-process is the step function for a single process state, and select is the component of the
input which selects the process that will take the next step. A liveness property for this type of system
may require that every process which starts some operation, eventually completes the operation which it
began. One way in which this liveness property would be invalidated is if after a particular process started
an operation, the process was never subsequently selected. Thus, a proper restatement of this property is
“assuming fair selection of processes, then whenever a process starts an operation, the operation is eventually
completed”. Our goal is to provide effective and generally useful books for defining such fair environment
assumptions. These books are included in the supporting materials of this paper and in the rest of this paper
we will present an incrementally elaborate series of fair environments concluding with the instantiable fair
environments included in the supporting materials.

2 Fair Environments

The first question we need to answer is what form of definition our fair environment assumptions should take.
There are multiple facets to this question. First, we want to capture the intention of fair assumptions, but
further, we want to assume nothing more than an environment which is fair. We will use ACL2’s encapsulate
feature to define functions with the minimal necessary constraints codified as theorems exported from the
encapsulation.

Second, the theorems exported from the encapsulation need to be in a useful form. Several previous proof
efforts with ACL2 have shown that an effective way to prove liveness in ACL2 is to define a measure function
which maps states to ordinals and prove that either the predicate good is true or the measure decreases (very
similar to the work on stuttering refinement proofs [4, 5, 3]). In this context of liveness proofs, the most
useful format for a fairness assumption is to define a natural number measure for each possible input which
decreases until that input is selected.

To these ends, we define a fair environment by two encapsulated functions env and env-measure. The
function env is an infinite sequence of inputs (as before), and env-measure is a function which takes an
input and a time and returns a measure which decreases strictly until the input is selected. In particular,
we define a fair environment by the following encapsulation:

(defun natp (x) (and (integerp x) (>= x 0)))
(encapsulate (((env *) => *)
((env-measure * *) => *))

(local (defun env (k) ...))
(local (defun env-measure (i k) ...))

(defthm environment-is-fair
(and (natp (env-measure i k)))
(implies (and (selectp i)
(natp k)
(not (equal i (env k))))
(< (env-measure i (1+ k))
(env-measure i k)))))

Where the unspecified function selectp is a recognizer for the set of inputs for which we wish to ensure
fair selection. We provide a “proof” that the above definition of a fair environment is logically equivalent to
a more direct declaration of a fair environment using defun-sk in the supporting materials.

In order to define the local witness functions for env and env-measure in the above encapsulation, we
assume the definition of the following functions which define a fair selector state machine:



(fair-select f)
(fair-measure i f)
(fair-step f)
(fair-inv f)
(fair-init)

The function fair-select takes the current fair selector state £ and returns the next input (i.e. the result
of env). The function fair-measure takes an input i and the current fair selector state f and returns
a natural number measure “bounding” the number of steps until the next selection of this input. The
function fair-step takes the current fair selector state £ and returns the next fair selector state. The
predicate fair-inv is a good-state predicate on fair selector states which is guaranteed to be invariant over
fair-step and true of the initial fair selector state fair-init. These functions are used to define the env
and env-measure witness functions as follows:

(defun fair-run (k) (if (zp k) (fair-init) (fair-step (fair-run (1- k)))))
(local (defun env (k) (fair-select (fair-run k))))
(local (defun env-measure (i k) (fair-measure i (fair-run k))))

We demonstrate the idea of defining a fair environment by defining a fair selector which ensures fair
selection of the natural numbers less than some upper bound. We will encapsulate this upper-bound as
follows:

(encapsulate (((upper-bound) => *)) (local (defun upper-bound () 1))
(defthm upper-bound-positive-natural
(and (integerp (upper-bound)) (> (upper-bound) 0))))

The fair selector we chose to define for these bounded natural numbers is a simple “round-robin” scheduler
which cycles the natural numbers less than upper-bound:

(defun selectp (i) (and (natp i) (< i (upper-bound))))
(defun fair-select (f) f)
(defun fair-measure (i f)

(if (selectp i) (if (< i f) (+ i (- (upper-bound) f)) (- i £)) 0))
(defun fair-step (f) (let ((f (1+ £))) (if (< f (upper-bound)) f 0)))
(defun fair-inv (f) (selectp £))

(defun fair-init () 0)

The following pertinent properties about these fair-selector functions allow us to relieve the proof obligation
of environment-is-fair for env and env-measure.

(defthm fair-measure-natural
(implies (fair-inv f) (natp (fair-measure i £))))

(defthm fair-measure-decreases
(implies (and (selectp i)
(fair-inv f)
(not (equal i (fair-select £))))
(< (fair-measure i (fair-step f))
(fair-measure i £))))

(defthm fair-inv-is-invariant
(implies (fair-inv f) (fair-inv (fair-step £f))))

This bounded fair selector may be of some use in its current form, but there are cases where we would
like to have fair selection over an infinite set. For instance, this would allow fair environments for systems
with an unbounded number of processes. Thus, we would like to have a fair selector over all of the natural



numbers and not just those under an upper-bound. Fortunately, a fair selector for a set S is also a fair
selector for any subset X C S and thus, our goal should be to define a fair selector for as large a set S as
possible.

We now consider the problem of defining a fair selector for the natural numbers. In the previous example,
we used a round-robin approach to ensure fair selection. A similar approach will not work for all of the
naturals since the naturals are not bounded. The solution in this case is to define a round-robin where the
upper-bound is increased steadily such that all natural numbers are eventually less than the ever-increasing
upper-bound. Further, all of the natural numbers which are less than the upper-bound will be selected again
on the next cycle of the round-robin. We only include the fair-select, fair-step, and selectp functions
for this extension below, but the complete definition and proofs are included in the supporting materials:

(defun selectp (i) (matp i))
(defun fair-select (f) (car f))
(defun fair-step (f)
(let ((a (car f)) (4 (cdr £)))
(if (< a d) (cons (1+ a) d) (cons 0 (1+ d)))))

Given we have defined a fair selector over the natural numbers, the next logical question is “can we define
a fair selection of the ACL2 universe?” (i.e. (defun selectp (i) t)). Fair selection of a set S ensures the
existence of a mapping from the set S into the natural numbers, and thus ensures that the set .S is countable.
Since the ACL2 universe is open, there exist models which include uncountable sets (e.g. the real numbers).
Thus, a fair selector over the ACL2 universe cannot be defined without restricting the ACL2 universe to be
countable which would require axiomatic extension of the logic. It is possible to use defun-sk to define the
property of fair selection of all objects and add this as an assumption to various theorems. This approach is
provided in the supporting materials, but we do not recommend its use in general.

We can use the fair selector over the natural numbers to provide fair selection of any countable set if we
are given an invertible mapping from this countable set into the natural numbers. For example, consider the
following recognizer of the so-called “nice” objects:

(defun nicep (x)
(or (stringp x)
(characterp x)
(acl2-numberp x)
(symbolp x)
(and (consp x)
(nicep (car x))
(nicep (cdr x)))))

In the supporting materials for this paper, we include the definition of functions nice->nat and an inverse
nat->nice which satisfy the following theorem:?

(defthm nice->nat->nice-properties
(and (natp (nice->nat x))
(nicep (nat->nice x))
(implies (nicep x) (equal (nat->nice (nice->nat x)) x))))

We use these functions to “transfer” the fair selection of the natural numbers to the fair selection of “nice”
objects (i.e. (defun selectp (i) (micep i))) which include the naturals as a subset and as such we can
simply use the fair selection of “nice” objects subsequently.

In order to demonstrate the application of these fair environment assumptions, we consider a simple
counting system and prove a liveness property. The simple system and liveness property are defined by the
following step, init, and good functions:

2Due to a technical limitation in ACL2 v2-7 and previous versions, it is impossible to define an inverse nat->nice which can
construct any symbol — the package must be defined first with a defpkg event. This issue will be remedied in ACL2 v2-8, and
thus, the definition of nicep in the supporting materials will be different in pre-v2-8 ACL2’s with booleans and keywords as
the only “nice” symbols.



(defun init () 0)
(defun step (s i)
(let ((s (if (= s i) (1+ s) s)))
(if (<= s (upper-bound)) s 0)))
(defun good (s) (= s (upper-bound)))

The key requirement in proving liveness is to define a function which provides a witness for the existential
quantifier in the function eventually-good. The function in our example is the function good-time:

(defun good-measure (n)
(cons (cons (if (matp n) 1 2)
(1+ (nfix (- (upper-bound) (run n)))))
(env-measure (run n) n)))

(defun good-time (n)
(declare (xargs :measure (good-measure n)))
(cond ((not (natp n)) (good-time 0))
((good (run n)) n)
(t (good-time (1+ n)))))

(defthm good-of-good-time
(good (run (good-time n))))

Intuitively, the function good-time returns the next time at which good will be true. This is accomplished
by incrementing a time parameter until good is true. Thus, the question of liveness has been reduced to
providing a measure for the termination of good-time. This measure will be composed of measures from
the system being verified and various calls of the env-measure function to allow “stuttering” until the next
key input is selected by the environment. In our example, the simple system consists of a counter which is
cyclically incremented up-to (upper-bound) but it only increments if the external input equals the current
counter. The measure for good-time is the lexicographic product of three terms. The term (if (natp n)
1 2) is included simply to pass over the case where an invalid time parameter is provided. The term (1+
(nfix (- (upper-bound) (run n)))) is the number of counter increments before good is true. Finally,
the term (env-measure (run n) n) bounds the number of inputs selected before a counter increment will
occur.

Thus, the environment-is-fair property is utilized in the termination proof for the function good-time.
The properties of the function good-time then allow us to prove liveness. While we do not claim that
our reduction from proving liveness to admitting good-time is a general solution in its current form, it
is likely the case that any proof of liveness would take a similar form. Further, it is our experience that
determining the proper measure function in liveness properties for real systems is fairly straightforward
and the majority of the proof effort is in defining and proving an inductive invariant which ensures the
system component of the termination measure decreases with each step.

3 Conditional Fairness

The fair selectors we defined in the previous section afforded unconditional fairness whereby every element
from the selection set was ensured to be selected at some point in the future irregardless of the system state.
In some cases, it may be useful to restrict the set of legal inputs for the system in order to simplify the
definition of the system. A naive approach to handle this case would be to take the input selected from a
unconditional fair selector and “coerce” the input to be a legal input. The problem with this naive approach
is that a particular input may only be selected when it is illegal and this would not be “fair” if the input
were legal infinitely often. In order to support this case, we need to define a fair environment which provides
a form of conditional fairness in which the environment assures that if an input is infinitely often legal, then
it is infinitely often selected.

In this case, we need to define the fair environment in terms of a legal-input predicate which takes a
system state and input and returns T if the input is legal to apply at the state. Further, we need to add a



system state component to the fair selector functions in order to allow the fair selector to adjust its state
according to which inputs are legal at a given system state. This complication breaks the nice functional
composition of fair-run, env, and run functions from the previous section and which in turn, requires us
to “move” the encapsulation to the fair selector. Due to these complications, we do not suggest the use of
this conditional fair environment in general. In some cases though, conditional fairness may be required and
thus we provide a “solution”.

The properties we proved for the previous unconditional fair selectors are inappropriate in the case of
conditional fairness. We need to adjust the decrements of the fair-measure such that (a) when an input is
legal and not selected, the measure decreases, and (b) when an input is not selected, the measure does not
increase. This is codified by the following theorem:

(defthm fair-measure-decreases
(let ((m (fair-measure i f))
(m+ (fair-measure i (fair-step f s x))))
(implies (and (fair-inv f)
(nicep 1)
(not (equal (fair-select f s) 1i)))
(and (<= m+ m)
(implies (legal-input s i) (< m+ m))))))

In addition to the pair of natural numbers used in the previous unconditional fair selector, the conditional
fair selector must maintain a list of inputs which were selected but were not legal when they were selected.
In each fair-step, this list of bypassed inputs is first consulted to determine if an input which was illegal
when selected, is now legal and if so, it is selected and removed from the list of bypassed inputs. If no
bypassed input is now legal, then we continue the increasing round-robin. Another complication arises due
to the need to satisfy the following additional theorem in the conditional fair selector encapsulation:

(defthm fair-select-must-be-legal
(implies (fair-inv f) (legal-input s (fair-select f s))))

In order to satisfy this theorem, we need to continue “running” the increasing round-robin until we find an
input which is legal for the current state (while collecting any inputs which are not legal in the bypassed
input list). In order to satisfy these constraints, we assume a function legal-witness ensuring the existence
of some legal input for every state:

(defthm legal-witness-is-legal-input
(legal-input s (legal-witness s)))

Given these parameters and referring to the intuition before, we now define our fair-step function (the
other functions for this conditional fair selector are included in the supporting materials):

(defun step-env (s bypass top ctr)
(cond ((not (and (matp ctr) (matp top) (<= ctr top)))
(1ist bypass 1 0))
((legal-input s (nat->nice ctr))
(cons bypass
(if (= top ctr) (list (1+ top) 0) (list top (1+ ctr)))))
((< ctr top)
(step-env s (append bypass (list ctr)) top (1+ ctr)))
(t
(step-env s (append bypass (list top)) (1+ top) 0))))



(defun fair-step (f s x) (declare (ignore x))

(let ((bypass (first f))
(top (second f))
(ctr (third £)))

(let ((ndx (legal-in-list s bypass)))
(if ndx
(1ist (drop-from-list bypass ndx) top ctr)

(step-env s bypass top ctr)))))

4 Conclusion

We presented a method (with definition and theorem support) for proving liveness properties in ACL2
requiring fair environment assumptions. We defined both unconditional and conditional fair selectors for
the “nice” ACL2 objects (the countable set of constructible objects from the ACL2 universe). We also
demonstrated the use of the unconditional fair selector in a simple but illustrative example.

This work provides no support for so-called “real-time” constraints whereby certain relative bounds for
the rate of selection for different inputs can be assumed and used in the definition of a system. Our primary
concern has been with capturing assumptions consistent with asynchronous compositions of processes and
basic usage models. The consideration of real-time constraints is an area of future work.
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