Fair Environment Assumptions in

ACL2

ACL2 Workshop 2003

July 13, 2003

Rob Sumners

Advanced Micro Devices, Inc.

robert.sumners@Qamd.com

| The Need for Fairness |

e reactive systems are systems which maintain
an ongoing interaction with an environment

— Common examples: operating systems, concurrent
algorithms, microprocessors, database transaction sys-
tems, etc.

e The specification of a reactive system will of-
ten include several progress properties

— e.g. for a transaction system, every transaction even-
tually completes

e In order to prove progress for reactive systems,
one often has to assume the environment makes
“progress”

— We term these progress assumptions fair environ-
ment assumptions

| Simple Reactive System in ACL2 |

e We assume a reactive system is defined in
ACL2 using a binary step function and a con-
stant init function

— The step function takes the current state and an
input from the environment and returns the next state

— The init constant function returns the initial state
of the system

e Consider the following simple reactive system:

(defun init () 0)

(defun step (s i)
(let ((s (if (= s i) (1+ s) 8)))
(if (<= s (UB)) s 0)))

— where (UB) is an arbitrary natural number Upper-
Bound

| Simple Progress Property in ACL2 |

e Assume the following function:

(defun good (s) (= s (UB)))

e Consider the following Progress property:

— At any time in any run of the system, (good s) will
hold for some future state s in the run

e But, the system may get “stuck” if inputs are
selected unfairly

— Thus we need to assume fair selection of inputs in the
statement of our property

| Specifying Progress (and Fairness) |

e In English: Assuming fair input selection,
then at all times, eventually (good s)

e In (pseudo) LTL:

(Vk e ®: (GF(i=k)) = (GF(good s))

— ®is the selection set and in this example must include
the natural numbers between 0 and (UB)

— G F = infinitely often

e How do we specify this in ACL27

— The straightforward specification of progress (and
fairness) involves statements about infinite sequences of
states (and inputs)

— But, in practice, we can reduce this to the definition
and proofs of well-founded measures and invariants over
single steps of the system

| Specifying Progress in ACL2 |

e In order to define progress, we need an infinite
run of the system:

(encapsulate (((env *) => %)) ...)

;5 arbitrary infinite input sequence

(defun run (n)
(if (zp n) (init)
(let ((n (1- n)))
(step (run n) (env n)))))

e We define our progress property (GF(good s))
using defun-sk:

(defun natp (x) (and (integerp x) (>= x 0)))

(defun time>= (y x)
(and (natp y) (implies (natp x) (>=y x))))

(defun-sk eventually-good (x)
(exists y (and (time>= y x) (good (run y)))))

(defthm progress (eventually-good n))

6

| Specifying Fair Selection in ACL2 |

e Approach #1: Define the notion of fair selec-
tion using defun-sk and add it as an hypoth-
esis to the relevant theorems

(defun-sk exists-future (k x)
(exists y (and (time>= y x)
(equal (env y) k))))

(defun-sk fair-selection ()
(forall (k n) (exists-future k n)))

e Assuming (fair-selection), we can now
prove progress

(defthm progress
(implies (fair-selection)
(eventually-good n)))

— In this case, ® is the ACL2 universe

e But, how do we prove this?

7

| Approach #1: Defining progress witness |

e In order to prove (eventually-good n), we
define a witness function which returns the next
time at which good will hold:

(defun good-time (n)
(if (good (run n)) n (good-time (1+ n))))

e [n order to admit good-time, we will need to
define a measure

— Assume (fair-selection) to define one compo-
nent of the measure — (env-measure k n) — with the
following property:

(defthm env-measure-property
(and (natp (env-measure k n))
(implies (and (fair-selection)
(natp n)
(not (equal (env n) k)))
(< (env-measure k (1+ n))
(env-measure k n)))))

| Approach #1: Admitting the witness |

e We will need to modify the witness function:

(defun good-time (n)
(declare (xargs :measure (good-measure n)))
(cond ((not (fair-selection)) 0)
((not (natp n)) (good-time 0))
((good (run n)) n)
(t (good-time (1+ n)))))

e Where the appropriate measure is defined by:

(defun good-measure (n)
(lexprod
(if (natp n) 1 2)
(1+ (nfix (- (upper-bound) (run n))))
(env-measure (run n) n)))

e A useful property of good-time:

(defthm good-of-good-time
(implies (fair-selection)
(good (run (good-time n)))))

9

| Approach #1: Drawbacks |

e The assumption of (fair-selection) im-
plies the countability of the ACL2 universe

e Must include (fair-selection) as an hy-
pothesis in several theorems

— This inclusion follows a pattern and could be removed
with a macro.

e Approach #2: Can we define an encapsulated
fair environment on a subset ® of the ACL2
universe’

— @ must be countable, but the larger ® is, the better

e We factor this into two problems to solve:

— Define a fair selector of the natural numbers

— Define an invertible mapping from @ into the naturals

10

| Approach #2: Fair selection of naturals |

e Problem: define (env n) and (env-measure
k n) which satisfy:

(defthm env-measure-property
(and (natp (env-measure k n))
(implies (and (natp k) ;; only change
(natp n)
(not (equal (env n) k)))
(< (env-measure k (1+ n))
(env-measure k n)))))

e Solution: define a round-robin where the upper-
bound on the cycle is always increasing

(defun fair-step (f)
(let ((ctr (car f)) (top (cdr f)))
(if (< ctr top)
(cons (1+ ctr) top)
(cons 0 (1+ top)))))

(defun fair-init () (cons 0 0))

11

| Approach #2: Fair selection ... - 2 |

e We can now define env and env-measure
witness functions with the desired property:

(defun fair-run (n)
(if (zp n) (fair-init)
(fair-step (fair-run (1- n)))))

(defun env (n) (car (fair-run n)))

(defun fair-ctr (goal ctr top)

(declare ...)

(cond (... 0)
((equal ctr goal) 1)
((< ctr top)
(1+ (fair-ctr goal (1+ ctr) top)))
(t
(1+ (fair-ctr goal 0 (1+ top))))))

(defun env-measure (k n)
(fair-ctr k
(car (fair-run n))
(cdr (fair-run n))))

12

| Approach #2: Transferring to ¢ |

e We define ® to be the nice objects with the
following recognizer:

(defun nicep (x)
(or (stringp x)

(characterp x)

(acl2-numberp x)

(symbolp x)

(and (consp x)
(nicep (car x))
(nicep (cdr x)))))

e Define an invertible mapping to the natural
numbers as the composition of:

— An invertible mapping from nice objects into the
simple-trees

— An invertible mapping from the simple-trees into the
naturals

e Transter the fair selection of naturals to ®
using the mapping and its inverse appropriately

13

| Approach #2: Application to Example |

e Using the constrained fair selection of nice
objects, we can now prove the theorems for our
example without the (fair-selection) hy-
potheses:

— For example, the following are now theorems:

(defthm good-of-good-time
(good (run (good-time n)))))

(defthm progress (eventually-good n))

e If fair selection of the nice objects is suflicient
(as in our example), then we recommend Ap-

proach #2

— Otherwise, either use Approach #1 or use Approach
#2 and maintain a redirection table in the system step

function

14

| Approach #2: More Complex Example |

e A mutual exclusion protocol with the follow-
ing step and good functions:

(defun step (s i)
(if (prp i)
(let*x ((ndx (car s))
(prs (cdr s))
(p (getp i prs))
(p+ (next-pc p))
(p+ (if (and (in-crit p+)
(/= 1 ndx))
p
p+))
(prs (setp i p+ prs))
(n+ (next-pr ndx))
(ndx (if (and (not (in-crit p+))
(= 1 ndx))
n+
ndx)))
(cons ndx prs))

s))

(defun good (s)
(in-crit (getp (pick-pr) (cdr s))))

15

| Approach #2: More Complex ... - 2 |

e Good News: We only need to change the def-
inition of good-measure

e Bad News:

(defun good-measure (n)
(let* ((s (run n))
(ndx (car s))
(prs (cdr s))
(nogo (not (equal ndx (pick-pr)))))
(lexprod
(if (natp n) 1 2)
(nfix (- (crit-pc) (getp (pick-pr) prs)))
(if nogo 2 1)
(if nogo
(if (> ndx (pick-pr))
(+ (- (last-pr) ndx)
(1+ (pick-pr)))
(- (pick-pr) ndx))
0)
(if mnogo
(- (last-pc) (getp ndx prs))
0)
(env-measure ndx n))))

16

| Further Extensions? |

e Conditional Fairness:

— We presented unconditional fairness, what about
conditional fairness?

— Imagine a predicate (legal s i) such that our step
function was only defined for 1egal inputs at the current

state
— We would like to have a fair environment which en-

sured:

Vk € : (GF(legal s k) = GF(i=k))

— A solution to this problem is provided in the sup-
porting materials, but its use is not recommended since
it requires tighter composition between system and en-
vironment

e Real-time Constraints:

— Some algorithms require bounds on the relative fre-
quency of selections of different inputs in order to func-
tion

— This 1s an area of future work

17

| Summary and Conclusions |

e We have presented two approaches to the use
of fair environment assumptions in ACL2

— One approach requires a (fair-selection) as-
sumption, the other restricts the selection set to nice
objects

e In practice, the example proofs of progress
provide a template for proving progress for other
systems

— The definition of the function good-measure will be
specific to a given system and will include the necessary
calls of env-measure

e Related Work: Mechanization of UNITY in
PC-NQTHM by D. Goldschlag

— Work focuses more on the mechanization of UNITY
proof rules (which rely on fairness) in PC-NQTHM
rather than the definition of fair environments

18

