An Analysis of the GWV
Security Policy

Jim Alves-Foss and Carol Taylor
Center for Secure and Dependable Systems
University of Idaho

Work supported in part through contracts/grants from DoD and Lockheed-Martin Areo.

Introduction

> Safety and Security.

o Need for computer systems to operate safely
and securely

o Specification and verification ofi nen-functional
system properties Is not straightforward
How do you make systems safe? Or, secure?
o Safety Involves a system behaving In a specified way.

o Security Involves a system behaving in a way that Is
not disallowead

Introduction

> Certification

o Critical systems that must operate securely or
safely go through external certification

o [FOr safety, FAA certification process for
avionics software
Do-178B development criteria
o FOr security, US government certification
process for software assurance

Common Criteria Evaluation Assurance. Levels
(EAL 1 through 7)

Introduction

> Common Criteria (CC) Reguirements

o Developers must follow development
standards that include security requirements

At the highest assurance levels, a formal
security policy Is required
» Prove formally that a functional specification
satisfies the formal security policy

Formal Methoads and Security.

> Formal Methods for Security (the CC
approach)

There Is a formal security policy; and proofs that the
policy satisfies the reguirements.

There Is a formal functional specification of the
system; and proofs that it satisfies the policy.

> The aim of this paper Is to show. that there are
shoertcomings In the presentation of GW\/ that
prohibits the reguisite proofs of #1.

Security Policies

> A security policy can be defined as
specifying the “authorized” and
“‘Unauthorized” states of a system

o WWe can say system A satisfies policy P

> A formal security policy Is used to specify
the “performance” or “behavior” ofi the
system.

o \We can say policy P meets reguirement R
> We use this toe say A meets R

Security Policy Misuse

> For a policy to be viable, there must be a statement of
the class of systems it applies to.

> Example:
o A masterlock padlock may be a strong device for limiting access.

o A policy could say Bob can only open the padlock Iif Bob has a
key. We can then prove many access control reguirements given
this policy.

However, a system that locks a brown paper sack with the
padlock Is not secure.

What went wrong? We did not place restrictions on the system —
we did not say that the system must prevent other accesses.
This is a common preblem in the development of secure
systems.

Introduction

> Greves, Wilding and VVanfleet Policy.

o In 2003, Greves, Wilding and Vanfleet
presented a formal security pelicy for a
separation kernel

GWN\/'s policy will be used in a CC certification of a
separation kernel

o In analyzing GWV, several ambiguities were
discovered

Important concepts were also left out of the original
paper

o [NIS paper Is an attempt to clarify GWV

o Concepts are introduced Important to
understanding the intent of the policy

Overview

> Review of GWV Policy

> Clarification of GWV Policy
> Modifying the GW\V Policy
> Conclusion

GWV. Policy

> The GWV policy models a separation kernel that
Supports partitioning

> ACL2 functions are introduced that capture the
partitioning concept
o ((current *)=>*) returns the current executing
partition given a machine state

o ((segs *)=> *) returns the list of segments associated
with a partition

o ((select **) = *) returns a value associated with a
Memery Ssegment in a specific state

GW\V. Palicy

> In a partitioning system there are
constraints on communication between
entities

> GWV models this by a function direct

Interaction allowed (dia)

e ((dia™) =$)Isthe set of segments allowed to
communicate with a seg

o ((mext*) —) returns the next machine state
rlepresenting one step of computation

GW\V. Palicy

> Another function, selectlist, accepts a
segment list and returns a list ofi values
associlated with those segments

(defun selectlist (segs st)
(If (consp segs)
(cons
(select (car segs) st)
(selectlist cdr segs) st))

nil))

GW\V. Palicy

Policy states

For any given segment, seg, its values can only change as a result
of interaction from memory segments in dia and part of executing
partition, current

(let ((srcsegs (intersection-equal (dia seg) (segs (current st1)))))
(iImplies

(and
(equal (selecllist srcsegs st1) (selectlist srcsegs st2))
(equal (current st1) (current st2))
(equal (select seqg st1) (select seg st2)))

(equal
(select seqg (next st1))
(select seqg (next st2))))))

Clarification of GW\/

> Next function Is one concern with GW\/.
o \WWhat does this function do?

> Concept ofi a cut point

Point in the execution wWhere previous
partition’s microprocessor state has been
saved

Next partition has not been loaded

Next partition to be executed Is the current
partition

Clarification of GW\/

> Next execution involves several steps

o Saved microprocessor state of current Is
loaded

o CUrrent executes until a partition event occurs
called, run-until-partition-event (rupe)

o At partition event, microprocessor state saved
back intor memory

o Microprocessor is sanitized of partition
Information

Clarification of GW\/

> How rupe works In two separate
universes, Stl and St2

t ‘ t

St1 Current Partition Event Next Stl

) 1 1

St2 Current Partition Event Next St2

Clarification of GW\/

> Next function critigue

o NO requirement that next be one microprocessor
Instruction or a set of instructions

o In cut-point model, next Implements many.
MICroprocessor instructions

o Must then assume that externally visible
changes to state between cut-points are not
security relevant

Clarification of GW\/

> Dia Is another point of concern

o SEQS refers to memory segments of a partition
iIncluding code and saved state segments

o dia IS the Iinstantiation of the security poelicy in
the separation kernel

Yet dia function as stated in GW\V would allow
unauthoerized information flow from Seg2

Segl in dia(se
- g1 in dia(seq)
Seg2

Seg2 not in dia(seQ)

B A

Modifying GWV

> Limiting Flow Based on Source Segments

o [0 Stop a copy from an unauthorized segment from
copying Information to a register and copying It back

o Need to specify a restriction on the dia function, dia-
complete
(defthm dia-complete
(Implies
(member-equal seg (segs part))
(subsetp-equal (segs part) (dia seq)))

o Specifies that the set of segments that can influence
seg Include all segments from a given partition

Modifying GWV

> Limit Flow Based on Code Trustworthiness

o All state aspects of a partition must be
represented by the segments

o |f some state Is not mapped to a segment there
could be leakage of information

GWV could allow a process which Is not trusted to
write information to a segment

Can happen because information flow: is enly
specified in terms ofi the source of the information
not wheo Is actually: deing the transferring

Modifying GWV

> The following defthm shows the
conseguences of untrusted writing

(defthm untrusted-writing
(Implies
Elgfo!
(not(equal(select outbox (next stl) (select outbox (next st2)))
(equal (current stl) current st2)))
(equal (current stl) ‘firewall)))

> untrusted-wniting shows that the contents of outbhox could
change as a result of an untrusted process
21

Conclusion

> Advantage of formal models Is that they
communicate precisely the desired behavior of a
system

« Assumptions must be stated explicitly especially
when modeling security policies

» Security policies that will be instantiated by specific
Implementations must clearly state the circumstances
under whichi the policy Is both valid and invalid

> For the GWV policy, we discussed ways that a
system could be insecure and still satisfy the
policy

» \We suggested enhancements to GW\ which we

believe creates a policy that more accurately.
lepresents an abstraction of a separation kernel

> Questions?

P

