
Axiomatic Events in ACL2(r):

A Story of defun, defun-std, and

encapsulate

Ruben Gamboa John Cowles Nadya Kuzmina
Computer Science Department

University of Wyoming
{ruben,cowles,nadya}@cs.uwyo.edu

November 8, 2004

Abstract

ACL2(r) is a variant of ACL2 that has support for reasoning about
the real and complex numbers. It is based on the logic of non-standard
analysis, axiomatized by Nelson as an extension of ZF set theory [7, 6].
ACL2(r) is described in [2, 3]. This paper lays out the logical foundations
of ACL2(r).

1 Introduction

The logical foundations of ACL2 are presented in [5], where the key question of
ACL2 is answered: What can we say about formulas proved by ACL2? In [5]
this question is answered as follows:

Every alleged theorem of an ACL2 session is in fact a theorem first-
order derivable from the extension of the built-in logic (with induc-
tion) by the axiomatic events of that session.

In the context of an ACL2 “session” this is a very strong statement, because
the axiomatic events (e.g., defun or encapsulate events) in a session may be
undone. For example, local definitions in an ACL2 book are not passed onto a
session that includes the book, but non-local theorems in the book are. From
the perspective of the new session, it follows that the non-local theorems are
first-order derivable from the non-local axiomatic events in the book.

ACL2(r) differs from ACL2 in the following ways:

• The Ground Zero theory (GZ) of ACL2(r) contains the predicates realp
and complexp that recognize the real and complex numbers (including the
irrationals), respectively. In addition, the arithmetic theory of ACL2 is

1



modified slightly to admit these new numbers (e.g., the floor of a real
number is not defined using integer division).

• The Ground Zero theory (GZ) of ACL2(r) also contains the predicate
standard-numberp, the unary function standard-part, and the constant
(zero-arity function) i-large-integer. Standard-numberp is used to
recognize a special class of numbers called the standard numbers. All
numbers that can be determined uniquely without using the predicates
standard-numberp, standard-part, or i-large-integer are standard;
thus, 0, 1, π, e,

√
2 and so on are standard. I-large-integer is a positive

integer that is non-standard; in fact, it is larger than all standard reals,
and its multiplicative inverse is smaller than all positive standard reals.
Real numbers, such as i-large-integer, that are larger in magnitude
than all standard reals are called i-large, and their multiplicative inverses
are called i-small. Numbers which are not i-large are called i-limited. Two
numbers are said to be i-close if their difference is i-small. The function
standard-part, when applied to an i-limited number, returns the unique
standard number that is i-close to its argument. These new notions and
results are taken directly from non-standard analysis.

• ACL2(r) classifies all function symbols as either classical or not. In GZ,
the only non-classical symbols are standard-numberp, standard-part,
and i-large-integer. When a new function is introduced with defun,
it is considered to be classical if and only if all the functions used in the
body are classical. When a function is introduced with encapsulate or
defchoose, it is considered to be classical. The notion of classical is also
extended to terms in the obvious way: a term is classical if and only if it
contains only instances of classical functions.

• ACL2(r) allows new classical function symbols to be introduced using
defun-std. When defun-std is used, the body of the definition need not
be classical. The function introduced is accepted only if the body can be
shown to produce standard values when all the arguments to the function
are standard. Moreover, the function is defined explicitly by the body only
when the arguments are standard. The function is only defined implicitly
for other arguments.

• ACL2(r) does not allow the use of recursion to introduce non-classical func-
tions with defun, nor does it allow the use of recursion with defun-std.

• ACL2(r) allows a theorem to be proved using defthm-std, in which case
ACL2(r) assumes, in addition to any hypothesis of the theorem, that all
free variables in the theorem take standard values. Note: The additional
hypothesis are only used during the proof; the theorem that ACL2(r)
has actually proved (and entered into ACL2(r)’s theorem database) is the
original theorem. Defthm-std can only be used when the theorem to
be proved contains only classical functions. The use of defthm-std is
justified by the transfer principle of non-standard analysis.

2



• ACL2(r) limits the use of induction when it is used to prove theorems that
use non-classical functions. In these cases, induction can be used only to
show that the theorem holds for all standard values of the free variables
in the theorem.

In [3] it is argued that the theory of ACL2(r) is consistent with respect to
ACL2. The argument is essentially that an ACL2(r) theory can be viewed as
a first-order theory inside Internal Set Theory (IST). The consistency of the
theory of ACL2(r) follows, since IST is known to be a conservative extension of
Zermelo-Fraenkel Set Theory (ZF) [6].

In this paper, we explore how definitional extensions work in the theory of
ACL2(r). Our motivation is two-fold. First, we want to make a statement about
formulas proved in ACL2(r) that is similar to what is proved in [5] for ACL2.
This means that we want the theorems of ACL2(r) to be statements that are
first-order derivable from the axiomatic events — which means that we have to
state precisely what first-order axioms are introduced by the axiomatic events
of ACL2(r). This stands in contrast with the presentation in [3], where it was
assumed that ACL2(r) sessions were carried out in the full context of Internal
Set Theory, not just first-order theory. Second, we want to extend ACL2(r) to
remove some of the limitations encountered in [4], but it would be foolhardy to
do so without having a solid foundation for ACL2(r) to start from.

This paper is structured as follows. In section 2 we present the outline
of the ACL2(r) story. This story follows the presentation in [5] very closely.
In section 3 we show how the defun event is used to introduce new classical
functions in ACL2(r). This is followed in section 4 by a discussion of the use
of defun to introduce non-classical functions. Section 5 completes the story for
the use of defun-std to introduce classical functions using non-classical terms.
Details of encapsulate are covered in section 6. This paper omits a discussion
of defchoose; we plan to deal with this in a subsequent version of this paper.
We conclude in section 7 with a look towards future enhancements to ACL2(r).

2 Preliminaries

We are concerned in this paper with first-order theories: sets of first-order
formulas that are closed under logical consequence. In the context of reasoning
about ACL2 or ACL2(r), it is sufficient to restrict ourselves to first-order theories
with equality and no other predicate symbols. For the remaining of this paper,
when we refer to first-order theories it should be understood that we mean first-
order theories with equality as their only predicate symbol. We assume that the
reader is familiar with the following basic notions: The language of a first-order
theory is the set of function symbols occurring in its formulas. A theory T1

extends a theory T2 if every theorem in T2 is also a theorem in T1. Moreover,
T1 conservatively extends T2 if every theorem of T1 in the language of T2 is also
a theorem of T2.

Since we use the classical notion of logical consequence as our only inference
scheme, the theories we consider must include axioms describing any other in-

3



ference rules, such as induction, or transfer. Now we consider axiom schemas
that characterize the derived inference rules of ACL2(r).

The case for induction is straightforward. ACL2(r) contains the binary func-
tion symbol ≺, which (intuitively) represents a well-founded relation on the
ACL2(r) universe1 The induction axiom schema for classical formulas φ is given
in [5]. We extend this axiom schema here to include non-classical formulas as
well. Recall that in the context of Internal Set Theory induction on non-classical
formulas only assures that the formula is true for standard values2.

Definition. Let φ be a formula, let x be a free variable in φ, and let y be a
variable not occurring in φ. Then the induction axiom for φ with respect to x
is given by

(∀x)(((∀y ≺ x)φ[x := y]) ⇒ φ) ⇒ (∀x)φ, if φ is classical
(∀x)(((∀y ≺ x)φ[x := y]) ⇒ φ) ⇒ (∀x)(standard(x) ⇒ φ), otherwise

A first-order theory T is said to be closed with respect to induction if it includes
every induction axiom in the language of T . 2

The transfer principle is also simple. We simply need to add a transfer axiom
for every possible classical formula φ. Notice that we only add these axioms for
classical formulae, since the transfer principle can only be used in these cases.

Definition. Let φ be a classical formula with free variables x1, . . . , xn and
no other free variables. The transfer axiom for φ is as follows:

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ φ) ⇒ (∀x1 . . . xn)φ

A first-order theory T is said to be closed with respect to transfer if it includes
every transfer axiom in the language of T . 2

There remains an inference rule needed to justify defun-std. The formal
justification given in [3] for defun-std appeals to the Standardization Axiom
of Internal Set Theory. This axiom, a weak version of the Specification Axiom
of ZF, is as follows. Given a standard set S, and a formula (classical or not)
φ(x) with free variable x

(∃!S′)(standard(S′) ∧ (∀x)(standard(x) ⇒ (x ∈ S′ ⇔ (x ∈ S ∧ φ(x)))))

This axiom can be used to justify the existence of a standard set that is the graph
of the function (necessarily standard) defined by defun-std. But the problem
is that this argument is in the language of set theory, and we are unwilling to
change the underlying story of ACL2 in such a drastic way. At a minimum, it
would require the existence of a set U containing all the objects in the ACL2
universe, and the other axioms of ACL2 would be relativized to this set. To

1A similar definition for the corresponding ACL2 ordering is given in [5].
2An alternative view is that the standard natural numbers correspond to the “old” set

of natural numbers, and that the non-standard numbers are in fact new natural numbers
beyond the original number line. In this view, induction on arbitrary formulas works only on
the original natural numbers.

4



avoid this difficulty, we introduce the function symbol fτ for each possible term
τ a priori. These function symbols are disjoint from the set of function symbols
that can be introduced by an ACL2(r) user.

Definition. Let L be a language. L contains all its term functions if for
any term τ in the language of L, L contains a function symbol fτ with arity n,
where n is the number of free variables in τ . 2

Definition. Let τ be a term with free variables x1, . . . , xn and no other
free variables. The standardization axiom for τ is as follows:

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(τ))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fτ (x1, . . . , xn) = τ))

The function symbols fτ are said to be non-visible. All other function symbols
are visible. A term or formula is said to be visible if it uses only visible function
symbols; otherwise, it is said to be non-visible. A first-order theory T is said
to be closed with respect to standardization if it includes all the standardization
axioms in the language of T . 2 Note: The preceding definition implies that a
theory can only be closed with respect to standardization if its language contains
all its term functions.

It is possible to start with a theory T that does not contain any standard-
ization axioms and derive a theory T ′ that extends T and is closed with respect
to standardization. The process is simply to introduce the symbols fτ for each
expression τ in T . The resulting theory, say T1, is not closed with respect
to standardization, because it does not contain the standardization axioms for
formulas that use the function symbols that are in T1 but not in T . But this
process can be iterated to produce the desired theory.

The standardization axioms in a theory can be used to generate a partial
orderings on the formulas τ of the theory. We say that τ1 � τ2 if fτ1 appears
in τ2, and the implied ordering is the transitive closure of �. In general, the
relation � is not an ordering. However, the process suggested earlier that
generates the standardization axioms for a given theory can be modified so that
it generates a valid partial ordering �. For the remainder of this paper, when
we say that a theory T is closed under standardization, we are also asserting
that the ordering implied by the standardization axioms of T is a valid partial
ordering.

Definition. A first-order theory T is said to be closed if it is closed with
respect to induction, transfer, and standardization. The closure of the theory
T is the theory resulting from extending T by the induction, transfer, and
standardization axioms in the language of T . 2

The basic story that we lay out in this paper is as follows. We start with
a closed theory GZ of ACL2(r). Then we show that the axiomatic events of
ACL2(r) — defun, defun-std, and encapsulate — conservatively extend a
closed theory T into a closed theory T ′. Moreover, in a closed theory the

5



derived inference rules of ACL2(r) — defthm-std, the non-standard principle
of induction — are simply first-order consequences of the axioms.

Why is the Ground Zero theory of ACL2(r) closed? The answer comes
from [6] and [3]. In [6] it is shown that Internal Set Theory is a conservative
extension of ZF set theory. Moreover, in IST the predicate standard and derived
predicates such as standard-part are given interpretations. IST restricts the
ways in which non-classical terms (i.e., those defined in terms of standard) can
be manipulated. For instance, it restricts the use of induction for non-classical
formulas. But IST provides inference rules that justify the use of non-classical
formulas, such as idealization, transfer, and standardization. As shown in [3]
these have direct counterparts in the closed theory GZ.

In the remaining sections we discuss why axiomatic events in ACL2(r) extend
a closed theory T conservatively into a closed theory T ′.

3 Defun: Classical Functions

The story of defun is told definitively in [5]. There it is shown that defun
events result in conservative extensions of an ACL2 theory. In this section, we
modify the argument in [5] to ACL2(r) theories. Our intent has been to stick
as closely as possible to the arguments in [5].

Definition. A classical definitional axiom D over a theory T is a finite
conjunction of equations of the following form

f(x1, . . . , xn) = term

where the function symbols f in the left-hand side of this axioms are distinct
classical function symbols disjoint from the function symbols in T , term is a
classical term in the union of the language of T with the set of left-hand side
function symbols of D, the variables xi are distinct and these are the only
variables free in term. 2

Other than the restriction that term be a classical term, this is entirely
equivalent to the definition of a definitional axiom in [5]. Therefore any function
that can be introduced into an ACL2 session using a definitional axiom of ACL2
can also be introduced into ACL2(r) using the classical definitional axiom.

For the remainder of this section fix a closed theory T and a definitional
axiom D over T . Let F be the set of function symbols introduced by D, i.e.,
those in the left-hand side of equations of D.

Following [5] we define the canonical interpreter for D as follows: Suppose
D contains the equation

f(x1, . . . , xn) = term

and let d be a variable not in term. Replace this equation with the following

f ′(d, x1, . . . , xn) = if zp(d) then NIL else termd−1,1

The formula ud,b is defined as follows:

6



• if u is a constant or variable, then ud,b = cons(u,NIL)

• else if u is if t0 then t1 else t2, b = 1, and (t0)d,0 = NIL, then ud,b = NIL

• else if u is if t0 then t1 else t2, b = 1, and car((t0)d,0) 6= NIL,
then ud,b = (t1)d,1

• else if u is if t0 then t1 else t2 and b = 1, then ud,b = (t2)d,1

• else if u is f(t1, . . . , tn) and at least one of (ti)d,0 = NIL, then ud,b = NIL

• else if u is f(t1, . . . , tn) where f 6∈ F ,
then ud,b = cons(f(car((t1)d,0), . . . , car((tn)d,0)), NIL)

• else u must be f(t1, . . . , tn) for some f ∈ F ,
and ud,b = f ′(d, car((t1)d,0), . . . , car((tn)d,0))

The symbols f ′ can be thought of as new function symbols, not in the
language of T or F . However, we can define them instead as expressions in
the language of T . The idea is as follows. It is clear that the functions f ′

terminate: the variable d serves to limit the number of times a term involving
f ′ is “opened” and all other branches through the definition of ud,b dive into a
subterm of u. A computation of f ′ can be thought of as a sequence of equalities,
e.g., the sequence produced by expanding the leftmost term into its definition:
f ′(d, t1, . . . , tn) = u if and only if there is a sequence of terms starting with
f ′(d, t1, . . . , tn) and ending with u such that each element (other than the first)
of the sequence follows from the previous one by the expansion of its leftmost
term. This condition can be stated as a first-order formula in the language of
T ; in other words, the f ′ are first-order definable in T . From now on, when we
say f ′ what we mean is this first-order definition in the language of T , so that
in fact the f ′ are not new function symbols.

As in [5], we are interested only in definitions D so that for each formula

f(x1, . . . , xn) = term

in D, it is a theorem of T that (∀x1 . . . xn)(∃d)(f ′(d, x1, . . . , xn) 6= NIL). Such
definitions are called interpreter admissible, and [5] shows that definitions which
satisfy the measure-oriented admissibility criterion of Nqthm and ACL2 are also
interpreter admissible.

Definition. Let T be a closed theory and D an interpreter admissible
definitional axiom over T . Then TD is the extension of T by the universal
closures of the following equations, one for each f defined in D:

f(x1, . . . , xn) =

 car(f ′(d, x1, . . . , xn)), where d is the least such that
car(f ′(d, x1, . . . , xn)) 6= NIL

NIL, if there is no such d

The theory TD is the extension of TD by all induction axioms in the language
of TD, i.e., TD is the inductive closure of TD. 2

7



Observation. The theory TD is a conservative extension of T . This follows
because the new functions f ∈ F are explicitly defined using only terms in the
language of T (i.e., without recursion). Recall, in particular, that the f ′ are
first-order definable in T . 2

What remains to be seen, however, is that TD is also a conservative extension
of T . To demonstrate this, we prove that the induction axioms in the language
of TD are first-order derivable in TD from the induction axioms in the language
of T . Consequently, TD is the same theory as TD.

Lemma. Let T2 be the extension of T1 formed by explicit definitions of new
function symbols in F . Then for every term τ in the language of T2, there is a
term τ ′ in the language of T1 such that τ = τ ′ is a theorem of T2. Moreover, τ ′

is classical if τ is classical.
Proof. We proceed by induction on the terms τ of T2. If τ is a variable or

constant symbol, then τ is already in the language of T1 (since we are extending
the language of T1 only by introducing new function symbols), and τ = τ is
certainly a theorem of T2. Otherwise, τ is of the form f(τ1, . . . , τn) for some
terms τi. Using the induction hypotheses, there are terms τ ′1, . . . , τ ′n in the
language of T1 such that τi = τ ′i is a theorem of T2 for each i. Moreover, if
τ is classical, each of the τi are classical, and so are each of the τ ′i . If f 6∈ F ,
then f must be in the language of T1, in which case letting τ ′ = f(τ ′1, . . . , τ

′
n) it

follows that τ = τ ′ is a theorem of T2, and clearly τ ′ is classical if τ is classical.
Otherwise, f is one of the functions explicitly defined to extend T1. I.e., there
is a term τf in the language of T2 such that (∀x1 . . . xn)(f(x1, . . . , xn) = τf ) is
an axiom of T2, and moreover the xi are the only variables free in τf . But then
letting τ ′ = τf [xi := τ ′i ], we can conclude in T2 that τ = τ ′, and τ ′ is in the
language of T1. Moreover, if τ is classical f is a classical function, which means
that τf is classical. So τ ′ is also classical. 2

Lemma. Let T2 be the extension of T1 formed by explicit definitions of
new function symbols in F . Then for every formula φ in the language of T2,
there is a formula φ′ in the language of T1 such that φ⇔ φ′ is a theorem of T2.
Moreover, φ′ is classical if φ is classical.

Proof. This is an simple extension of the previous lemma, proved using
induction on the logical structure of φ. 2

Theorem. Let T1 be a theory that is closed with respect to induction and
let T2 be the extension of T1 formed by explicit definitions of new function
symbols in F . Then T2 is closed with respect to induction.

Proof. We prove this by showing that each induction axiom over the lan-
guage of T2 is a theorem of T2. Let φ be an induction axiom over the language of
T2. Recall that there are two types of induction axioms, depending on whether
the underlying formula is classical or not. We consider each case separately.
Suppose φ takes the following form, where ψ is classical:

(∀x)(((∀y ≺ x)ψ[x := y]) ⇒ ψ) ⇒ (∀x)ψ

From the previous lemma, we can find ψ′ in the language of T1 such that ψ ⇔ ψ′

is a theorem of T2 and ψ′ is also classical. Therefore, the following is an induction

8



axiom in T1 and hence a theorem of T2:

(∀x)(((∀y ≺ x)ψ′[x := y]) ⇒ ψ′) ⇒ (∀x)ψ′

Since ψ ⇔ ψ′ is also a theorem of T2, it trivially follows that

(∀x)(((∀y ≺ x)ψ[x := y]) ⇒ ψ) ⇒ (∀x)ψ

is a theorem of T2.
A similar argument suffices to show that φ is a theorem of T2 when φ is of

the form

(∀x)(((∀y ≺ x)ψ[x := y]) ⇒ ψ) ⇒ (∀x)(standard(x) ⇒ ψ)

for a non-classical ψ. So we conclude that T2 contains all induction axioms over
its language; i.e., it is closed with respect to induction. 2

Applying this theorem to TD as defined above, we find that TD is closed
with respect to induction; i.e., TD = TD. So TD is a conservative extension of
T . The theory TD is discussed extensively in [5]. The following is an important
theorem proved in that paper:

Lemma. Let D be interpreter admissible over the theory T . Then each
formula of D is a theorem of TD. Moreover, TD is a subtheory of the inductive
closure of the extension of T by D. 2

To complete the story, we must show that TD is also closed with respect to
transfer and standardization.

Theorem. Let T1 be a theory that is closed with respect to transfer and let
T2 be the extension of T1 formed by explicit definitions of new function symbols
in F . Then T2 is closed with respect to transfer.

Proof. Let φ be a transfer axiom over the language of T2. Then φ has the
form

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ ψ) ⇒ (∀x1 . . . xn)ψ

for some classical formula ψ in the language of T2. There is a formula ψ′ in
the language of T1 such that ψ ⇔ ψ′ is a theorem of T2, and moreover ψ′ is
classical. That means that the transfer axiom for ψ′ is a theorem of T1:

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ ψ′) ⇒ (∀x1 . . . xn)ψ′

But then φ is provable in T2. 2

Matters are not as straightforward in the case of standardization. The prob-
lem is that the standardization axiom requires a classical function symbol fτ

for each term τ in the language of T2. But since the language of T2 extends the
language of T1 (by the new function symbols in F ), this means that we need
some new symbols fτ .

Theorem. Let T1 be a theory that is closed with respect to standardization
and let T2 be the extension of T1 formed by explicit definitions of new function

9



symbols in F . Then there is a conservative extension ∗T2 of T2 that is closed
with respect to standardization. We call ∗T2 the standardization closure of T2

with respect to T1.
Proof. Since T2 is an extension of T1, it contains all the standardization

axioms for terms τ in the language of T1. We will now extend T2 by introducing
a new function symbol fτ for each term τ in the language of T2 that is not
in the language of T1. Let τ be such a term, and let x1, . . . , xn be the free
variables in τ . By a previous lemma, there is a term τ ′ in the language of T1

such that T2 proves τ = τ ′. Since T1 is closed with respect to standardization,
the standardization axiom for τ ′ is a theorem of T1 and therefore of T2:

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(τ ′))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fτ ′(x1, . . . , xn) = τ ′))

Now we extend T2 by defining fτ (x1, . . . , xn) = fτ ′(x1, . . . , xn); call the resulting
theory 1T2. It immediately follows that the following is a theorem of 1T2:

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(τ))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fτ (x1, . . . , xn) = τ))

And fτ is classical, since it is defined in terms of a classical function, i.e., fτ ′ .
So the standardization axiom for τ is a theorem of 1T2. Notice that this is a
conservative extension, since the new function fτ is defined explicitly in terms
of fτ ′ .

Then we extend 1T2 by considering a τ2 that is in the language of 1T2 but
not in the language of T1. Since the set of (finite) terms τ over a countable
language is countable, we can arrange the order in which the terms are consid-
ered such that after a countable number of extensions the resulting theory is
closed with respect to standardization; i.e., given any term τ in the language,
we are guaranteed to add the standardization axiom for τ after a finite number
of extensions. Call the resulting theory ∗T2. It is a conservative extension of T2

that satisfies the requirements of the theorem. 2

Definition. Let T be a closed theory and D an interpreter admissible
definitional axiom over T . The closed extension of T by D is the theory ∗TD

which is formed as follows: (1) Extend T by D, (2) take the standardization
closure of the resulting theory, (3) take the inductive closure of the resulting
theory, and finally (4) take the transfer closure of the resulting theory. 2

When a definitional axiom D is introduced into the ACL2(r) theory T , the
ACL2(r) theory of the session is extended to T ′ the closed extension of T by
D. As in [5], T ′ is a subtheory of the (standardization, inductive, and transfer)
closure of TD. Moreover, it is clear that the ACL2(r) event of defthm-std is

10



justified in T ′, since T ′ is closed with respect to transfer. Similarly, the classical
and non-classical induction principles of ACL2(r) follow from the fact that T ′

is closed with respect to induction. In section 5, we explore the justification for
defun-std.

4 Defun: Non-Classical Functions

ACL2(r) allows the user to define non-classical functions using defun, simply
by providing a non-classical definition in the body. However, the introduction
of such functions is limited in ACL2(r) only to non-recursive functions. That is,
only non-recursive definitions can be used to introduce non-classical functions
in ACL2(r). This is formalized in the following definition.

Definition. A non-classical definitional axiom D over a theory T is an
equation of the following form

f(x1, . . . , xn) = term

where the function symbol f is a non-classical function symbol not in the lan-
guage of T , term is a non-classical term in the language of T (hence not including
f), the variables xi are distinct and these are the only variables free in term. 2

Consider the extension T ′ of a closed theory T by adding the following non-
classical definitional axiom D:

f(x1, . . . , xn) = term

Since f is introduced by an explicit definition, T ′ is a conservative extension
over T . Moreover, by the lemmas shown in the previous section, the induction,
transfer, and standardization axioms of f are theorems of the new theory T ′,
because they are equivalent in T ′ to the comparable axioms for term in T . This
extension T ′ is the result of encountering such a defun event in an ACL2(r)
session.

5 Defun-std

We now turn our attention to defun-std, which allows the introduction of a
classical symbol from a non-classical body. Before such a definition is accepted,
ACL2(r) checks that the body produces standard outputs when it is given stan-
dard inputs. This is meant to ensure the existence of the classical function
introduced by this event.

Definition. A classical definitional axiom D from a non-classical term over
a theory T is an equation of the following form

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ f(x1, . . . , xn) = term)

where the classical function symbol f is not in the language of T , term is a
possibly non-classical term in the language of T such that term is provably (in

11



T ) standard whenever all the xi are standard, the variables xi are distinct, and
these are the only variables free in term. 2

Consider a closed theory T and the following classical definitional axiom D
from a non-classical term over T :

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ f(x1, . . . , xn) = term)

We will now show how to construct a theory T ′ that is a closed, conservative
extension of T such that D is a theorem of T ′. Since T is closed, the following
is a theorem of T .

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(term))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fterm(x1, . . . , xn) = term))

Note that x1, . . . , xn are precisely the free variables of term. Moreover, notice
that the hypothesis in this theorem can be discharged from the restrictions
imposed on term, namely that it return standard values for standard values of
its parameters. Now consider the following equation:

f(x1, . . . , xn) = fterm(x1, . . . , xn)

Since fterm is a classical function in the language of T , this equation actually
comprises a classical definitional axiom D′ over T . Therefore, the theory T can
be extended conservatively into a closed theory T ′ such that D′ is a theorem of
T ′. But then D is necessarily a theorem of T ′.

For technical reasons we prefer to introduce the function f using an axiom
over the visible language of T 3. So consider again the following definitional
axiom

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ f(x1, . . . , xn) = term)

We can safely assume that term is a term over the visible language of T . Oth-
erwise, term must use a function symbol fτ . We can remove fτ simply by using
defun to introduce the new (visible) function f ′ such that f ′ is equal to fτ . Let
T ′′ be the closure with respect to transfer of the extension of T by this visible
definitional axiom. We claim that this theory is precisely the theory T ′ defined
above. The reason is that since fτ and f are classical, we can use the transfer
axiom to prove that f is equal to fτ from the definitional axiom given above.

3This is what is actually done in the implementation of ACL2(r). The non-visible function
symbols are never used directly in the implementation.

12



6 Encapsulate and Functional Instantiation

In this section, we consider how ACL2(r) works with encapsulate events and
subsequent functional instantiations.

The story of encapsulate itself is a simple one. Essentially, an encapsulate
event lets the user introduce as an axiom a theorem about a given function
without introducing a definitional axiom for the function. A careful argument
given in [5] shows that this can be done conservatively. The gist of this argu-
ment is that the theory introduced by an encapsulate event is a subtheory of
the one that would result if the functions introduced by that encapsulate were
simply defined explicitly. Since we already know that explicitly defining a func-
tion results in a conservative extension, the (weaker) theory resulting from an
encapsulate event is necessarily conservative.

The difficulty, however, lies with the correctness of functional instantiation,
which can be used by ACL2 and ACL2(r) to prove theorems. In this paper we
will discuss only simple cases of functional instantiations as defined below4.

Definition. Let T be a theory. A simple functional substitution is a func-
tion over the function symbols of (the language of) T that preserves arity and
classicalness. I.e., it maps classical function symbols to classical function sym-
bols, non-classical function symbols to non-classical function symbols, unary
function symbols to unary function symbols, binary function symbols to binary
function symbols, etc. Moreover, a simple functional substitution is required to
map each function in the Ground Zero theory of ACL2(r) to itself. A simple
functional substitution that maps each non-visible symbol of (the language of)
T to itself and each visible symbol of T to a (possibly different) visible symbol
of T is called a visible simple functional substitution. If X is a formula of T and
fs is a simple functional substitution, the formula X\fs is the formula that
results by substituting each functional instance in X with the function to which
fs maps it. 2

To see the validity of functional substitution as a proof rule, we can proceed
as follows. Suppose that φ is a theorem of some closed theory T in ACL2(r),
and let fs be a functional substitution over this theory. We know there is a
proof of φ in T . Suppose that A\fs is a theorem of T for each axiom A used in
this proof of φ. Then it follows that φ\fs is a theorem of T .

The trick is to show that A\fs is a theorem of T for every axiom used in
the proof. The reason this is difficult is that the axioms of T include induction,
transfer, and standardization axioms. In ACL2(r) these axioms are never ex-
plicit; rather they are used implicitly in the implementation. So as a matter of
practicality, we would like to avoid considering A\fs for any induction, transfer,
or standardization axiom A.

To make this notion explicit, [5] introduces the notion of a labeled formula.
For our purposes, we can think informally of the labeled formulas of a theory
T as the set of axioms directly introduced by the user during the course of an

4More complex cases, e.g., involving lambda expressions, can also be handled, but this
requires a change to ACL2(r).

13



ACL2(r) session that defined T . I.e., this includes the axioms that define or
constrain new function symbols, but it excludes all the induction, transfer, and
standardization axioms added automatically by ACL2(r) on the user’s behalf.
Observe that all labeled formulas are in the visible language of T . With this
notion we are ready to prove the validity of simple functional instantiation.

The following technical lemma is proved in [5].
Lemma. Suppose that φ is a theorem of a given first-order theory T and

that fs is a simple functional substitution whose domain is disjoint from the
set of function symbols of T . Then φ\fs is a theorem of T . 2

This lemma makes a deceptively simple claim: If a theorem involves function
symbols that are not mentioned in the axioms of the theory in which it is proved,
then the meaning of those function symbols is irrelevant, so the functions they
represent can be replaced with different functions. We use this lemma to prove
the following theorem.

Theorem. Let T be a closed first-order theory, let fs be a visible simple
functional substitution over the language of T , and let φ be a theorem of T such
that φ uses only visible function symbols. Moreover, suppose that A\fs is a
theorem of T for each labeled formula A in T . Then φ\fs is a theorem of T .

Proof. Since φ is a theorem of T , there is some proof of φ in T . Fix one
such proof. Let P be the conjunction of the axioms used in this proof of φ.
Then P ⇒ φ is a theorem of a subtheory of T that does not contain any axioms
about the function symbols in φ, e.g., the Ground Zero theory GZ.

We construct a simple functional substitution fs′ that is an extension of fs
as follows. Consider all standardization axioms A used in the fixed proof of T .
Let τ1, . . . , τm be the terms standardized by these axioms, such that τj is not
less than τi according to the partial ordering implied by standardization when
i < j. Then let fs0 = fs, and define fsi as the extension of fsi−1 that maps
fτi

to fτi\fsi−1 . The functional substitution fs′ is equal to fsm, i.e., the final
extension.

Then the preceding lemma assures us that (P ⇒ φ)\fs′ is also a theorem
of this subtheory. But that means that (P\fs′ ⇒ φ\fs) is a theorem of this
subtheory and hence also of T . We will complete the proof by showing that
P\fs′ is a theorem of A.

Consider each conjunct A of P , i.e., each axiom used in the fixed proof of
φ. If A is a labeled formula of T , then by hypothesis A\fs is a theorem of T .
Since labeled formulas are in the visible language of T , it follows that A\fs′ is
equal to A\fs and we’re done.

If A is either an induction or a transfer axiom, then A\fs′ is also an induc-
tion or transfer axiom. The reason is that A\fs′ preserves the structure of A,
changing only the function symbols. Since fs′ also preserves classicalness, the
formula A\fs′ will be of the right type (e.g., classical or non-classical induction
axiom as appropriate). And since T is closed, it follows that A\fs′ is a theorem
of T .

14



Finally, suppose A is a standardization axiom. Then A has the form

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(τ))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fτ (x1, . . . , xn) = τ))

where τ is a term with free variables x1, . . .xn and fτ is classical. So A\fs′ has
the following form

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(τ\fs′))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fτ (x1, . . . , xn)\fs′ = τ\fs′))

There must be an i such that τ is equal to τi, one of the formulas used in the
construction of fs′. Then fτ (x1, . . . , xn)\fs′ is equal to fτi\fsi−1(x1, . . . , xn).
Because the τi are ordered according to the implied ordering imposed by stan-
dardization, τi can not contain any of the fτj

for j ≥ i. What this means is
that fτi\fsi−1(x1, . . . , xn) is equal to fτi\fs′(x1, . . . , xn). Therefore, A\fs′ has
the form of a standardization axiom, and since T is closed A\fs′ is a theorem
of T . 2

7 Looking to the Future

In this paper we have laid the logical foundations of ACL2(r). The net result
is that we can state formally what it means to be a theorem of an ACL2(r)
session.

In doing so, we were partly motivated by a desire to enhance ACL2(r).
Some of its limitations were shown in [4], where restrictions placed by ACL2(r)
on the use of functional instantiation made reasoning about differentiable func-
tions very tedious. Since then, we have been considering some enhancements
to ACL2(r) to make it a more practical theorem prover over the reals. In this
section, we will outline some of the enhancements we have in mind.

First of all, ACL2(r) knows about the non-standard numbers, both reals and
complex. Pointedly, the presentation in this paper did not single out the num-
bers as the only possible non-standard objects in the ACL2(r) universe. So it
should be straightforward to include other non-standard objects in ACL2(r). It
suffices to show that there is a model of the Ground Zero theory of ACL2(r) that
contains non-standard objects. Such a model can be constructed by embedding
an ACL2(r) universe in Internal Set Theory.

Second, we would like to make it easier to prove that certain terms are
standard. Consider the object f(t1, . . . , tn). If f is classical and all the ti are
standard, it necessarily follows that f(t1, . . . , tn) is standard. However, this fact

15



can not be proved directly in the current version of ACL2(r). Making such a
conclusion is justified by the theory we outlined here. Suppose, for a moment,
that f(t1, . . . , tn) is in fact not standard. Then we have that

(∀y)(standard(y) ⇒ y 6= f(t1, . . . , tn))

But since y 6= f(t1, . . . , tn) is a classical formula, we can use this theorem and
the corresponding transfer axiom to prove

(∀y)y 6= f(t1, . . . , tn)

This is an obvious contradiction. It follows, therefore, that f(t1, . . . , tn) must
be standard.

Third, we want to make a finer distinction among the non-classical functions.
There is a significant difference between the following non-classical functions:

• f(x) = if standard(x) then 1 else 0

• g(x) = x+ ε

where ε is a fixed non-standard number. Informally, functions like g have close
cousins in the classical world, e.g., the function h(x) = x + 1. On the other
hand, functions like f simply have no close relative in the classical sense. In
fact, functions like f violate the rules of classical functions, e.g., the class {x ∈
Nat | f(x) = 0} is not a set. Functions like g are called internal. Non-classical
functions that are not internal are called external. Syntactically, the forbidden
predicate standard and functions standard-numberp and standard-part are
still off-limits to internal expressions, but i-large-integer is not. In addition,
we would like to allow encapsulate to introduce all three types of functions:
classical, internal, and external.

The reason for doing this is that it is convenient sometimes to reason about
all internal functions, for example. Consider the definition of derivative. We
are all familiar with the usual limit-based definition used in classical analysis.
A simpler but non-classical definition is used in [2]. In [4], it was necessary to
reason about expressions such as the following: d(xn)

dx . Using the chain rule, it
is easy to prove the familiar result by induction on n. But since the definition
of derivative we used is non-classical, we were only able to conclude that the
d(xn)

dx = n · xn−1 for standard values of n.
To prove the result for all values of n requires a different approach. The

first step is to introduce the classical notion of derivative and to prove that it
is equivalent to the one used in [4]. Now we can use induction on the classical
version of derivative, and the result will follow. It turns out that there are
many slightly different notions of derivative. Some of these are equivalent to
each other. Others are equivalent only at standard points, and still others are
equivalent only for classical or even internal functions. Some of these definitions
are proved equivalent (under the appropriate circumstances) in [1]. But to do so
in ACL2(r) we need to reason about arbitrary internal functions, or arbitrary

16



external functions. Hence, we plan to allow such functions to be introduced
with encapsulate.

Finally, we want to allow the introduction of non-classical recursive func-
tions. This is especially important in the context of ACL2(r), since recursion
is often used to reason about bounded quantifiers. For example, consider the
following theorem: “The sum of a standard number of standard numbers is
standard.” Not only can we not prove this in ACL2(r), we can not even state
it. The reason is that the concept of a “list of standard numbers” is recursive.
I.e., we would like to write something like the following:

(defun standard-list-p (lst)
(if (endp lst)

t
(if (not (standard-p (length lst)))

nil
(and (standard-p (car list))

(standard-list-p (cdr lst))))))

(defthm standard-sumlist
(implies (standard-list-p lst)

(standard-p (sumlist lst))))

However, the first definition is inadmissible. Introducing non-standard recur-
sive functions presents a major challenge, however. For example, the following
function illustrates the risks involved:

(defun standard-floor (n)
(if (or (zp n) (standard-p n))

(nfix n)
(standard-floor (1- n))))

A naive admission of this function would uncover a standard integer such that
its successor is non-standard — but no such number exists. We believe that a
modification of interpreter admissibility can be used to accept such functions. A
function is said to be interpreter admissible if we can prove that for every input,
there is some integer d such that the canonical interpreter for the function ter-
minates after d steps. For non-classical functions, we would further require that
d be a standard integer. We are presently pursuing this and other possibilities.

Acknowledgments

The authors would like to thank Matt Kaufmann for his patience, promptness,
and thoroughness in answering all questions related to [5]. It is simply stating
the facts to say that this paper could not have been written without his help.
We would also like to thank him for fruitful discussions that led to this paper
in the first place.

17



References

[1] A.M. Ballantyne and W. W. Bledsoe. Automatic proofs of theorems in analy-
sis using non-standard techniques. Journal of the Association for Computing
Machinery (JACM), 24(3):353–371, 1977.

[2] R. Gamboa. Mechanically Verifying Real-Valued Algorithms in ACL2. PhD
thesis, The University of Texas at Austin, 1999.

[3] R. Gamboa and M. Kaufmann. Nonstandard analysis in ACL2. Journal of
Automated Reasoning, 27(4):323–351, November 2001.

[4] R. Gamboa and B. Middleton. Taylor’s formula with remainder. In Proc
of the Third International Workshop of the ACL2 Theorem Prover and its
Applications (ACL2-2002), 2002.

[5] M. Kaufmann and J S. Moore. Structured theory development for a mech-
anized logic. Journal of Automated Reasoning, 26(2):161–203, 2001.

[6] E. Nelson. Internal set theory: A new approach to nonstandard analysis.
Bulletin of the American Mathematical Society, 83:1165–1198, 1977.

[7] A. Robinson. Non-Standard Analysis. Princeton University Press, 1996.

18


