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Abstra
tIt is shown that the existen
e of an unique total fun
tion satisfyinga tail re
ursive de�nitional axiom ensures the re
ursion always halts.This is in 
ontrast to the general 
ase, when the adje
tive tail neednot apply to the re
ursion: The existen
e of an unique total fun
tionsatisfying a (general) re
ursive de�nitional axiom need not for
e there
ursion to always terminate.A similar result is shown to have appli
ation to Tail Re
ursiveInterpreters.The result reported in [1℄ about Knuth's generalization of M
-Carthy's 91 Fun
tion is obtained in a di�erent way, as a 
orollary ofmore general results about re
exive tail re
ursive fun
tions.Introdu
tionTail re
ursive de�nitional axioms have desirable properties not enjoyed byarbitrary re
ursive de�nitional axioms. Foremost among these properties is
onsisten
y of the axiom. To ensure 
onsisten
y, ACL2's de�nitional prin-
iple requires that the re
ursion in a proposed de�nitional axiom satisfy anappropriate measure 
onje
ture. In [5℄, P. Manolios and J S. Moore show itis always 
onsistent to add a tail re
ursive de�nitional axiom (even when there
ursion does not satisfy any appropriate measure 
onje
ture).1



ACL2's de�nitional prin
iple ensures more than 
onsisten
y. Satisfa
tionof an appropriate measure 
onje
ture means that the re
ursion always haltsand that implies there is one and only one total fun
tion satisfying the de�ni-tional axiom. The 
onverse impli
ation, in general, does not hold. That is,the existen
e of an unique total fun
tion satisfying a re
ursive de�nitionalaxiom does not for
e the re
ursion to always terminate.However, the afore mentioned 
onverse impli
ation does hold for tail re-
ursive de�nitional axioms:The existen
e of an unique total fun
tion satisfyinga tail re
ursive de�nitional axiom does mean the re
ursion always halts.Tail Re
ursionWhat is tail re
ursion? A fun
tion is said to be tail re
ursive if its de�nitionis tail re
ursive. The de�nition of a fun
tion f is tail re
ursive provided thereis at least one re
ursive 
all to f in the body of the de�nition and ea
h su
hre
ursive 
all to f is tail re
ursive.Here is what it means for a re
ursive 
all to be tail re
ursive in a de�nitionsu
h as this one:(defun f (x1 : : : xn)body)Assume body 
ontains no ma
ros or lambda appli
ations. That is, expand allma
ros in body and redu
e the lambda appli
ations by �-redu
tion. Thinkof the expanded body as an expression tree. A re
ursive 
all of f in body istail re
ursive just in 
ase these two 
onditions are met.1. The 
all to f is not on the test bran
h of any if.2. On any bran
h 
ontaining the 
all to f, only if may appear above the
all to f.Examples.� (defun f (x)(if (f x)xx)) The 
all to f in this body violatesthe �rst 
ondition above, so the
all is not tail re
ursive.2



� (defun f (x)(if (zp x)1(* x(f (- x 1))))) The 
all to f in this body violatesthe se
ond 
ondition above (* ap-pears above f in the expressiontree), so the 
all is not tail re
ur-sive.� (defun A (x y)(de
lare(xargs :guard(and (natp x)(natp y))))(if (zp x)(+ y 1)(if (zp y)(A (- x 1) 1)(A (- x 1)(A x(- y 1))))))

There are three 
alls to A in thisbody. The 
all (A (- x 1) 1) andthe outer 
all in (A (- x 1)(A x(- y 1))) are both tail re
ursive.The inner 
all (A x (- y 1)) isnot tail re
ursive be
ause the outer
all to A appears above this inner
all in the expression tree.
� (defun M91 (x)(de
lare(xargs :guard(integerp x)))(if (> x 100)(- x 10)(M91(M91 (+ x 11)))))

There are two re
ursive 
alls to M91in this body. The outer 
all in (M91(M91 (+ x 11))) is tail re
ursive.The inner 
all (M91 (+ x 11)) isnot tail re
ursive be
ause the outer
all to M91 appears above this inner
all in the expression tree.� (defun 3x+1 (x)(de
lare(xargs :guard (natp x)))(if (<= x 1)x(if (evenp x)(3x+1 (/ x 2))(3x+1(+ (* 3 x) 1)))))
The two 
alls to 3x+1 in this bodyare both tail re
ursive 
alls.
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Tail Re
ursive Fun
tionsLet test, base, and step be unary fun
tions. Consider the following pro-posed tail re
ursive de�nition.(defun f (x)(if (test x)(base x)(f (step x))))Sin
e this re
ursive 
all to f is simple and expli
itly given, it is possible tobe expli
it and very pre
ise about the meanings of the following with respe
tto this proposed de�nition:� A total fun
tion satis�es the de�ning tail re
ursion axiom for this def-inition.� The tail re
ursion in this de�nition terminates for a given input.� The tail re
ursion in this de�nition satis�es a measure 
onje
ture.It possible to state these 
on
epts in ACL2. Therefore proofs of the theorems(but not the propositions nor the 
orollaries) given below were me
hani
allyveri�ed using ACL2.A total ACL2 fun
tion f is said to satisfy the de�ning tail re
ursion axiomfor the proposed de�nition provided the following is true about every x.(equal (f x)(if (test x)(base x)(f (step x))))P. Manolios and J S. Moore's defpun paper [5℄ shows that there is alwaysat least one total ACL2 fun
tion that satis�es the de�ning tail re
ursion axiomfor any su
h proposed tail re
ursive de�nition.The tail re
ursion in the above proposed de�nition is said to terminate for agiven x provided the following holds 9n(test(stepn x)). The tail re
ursion inthe above proposed de�nition is said to always halt provided the tail re
ursionterminates for all x.The tail re
ursion in the above proposed de�nition is said to satisfy ameasure 
onje
ture provided there is a well-founded binary relation rel, onthe set of obje
ts re
ognized by some predi
ate mp, and a measure m satisfying4



(and (mp (m x))(implies (not (test x))(rel (m (step x))(m x))))The binary relation rel is well-founded on the set of obje
ts re
ognized by mpjust in 
ase there is a rel-order-preserving fun
tion fn that embeds obje
tsre
ognized by mp into ACL2's ordinals:(and (implies (mp x)(O-p (fn x)))(implies (and (mp x)(mp y)(rel x y))(O< (fn x)(fn y))))In ACL2 Version 2.9, O-p re
ognizes the ordinals up to epsilon-0 and O< isthe well-founded less-than relation on those ordinals.Theorem 1 The following are equivalent for any fun
tion with a tail re
ur-sive de�nition like that for f.1. The re
ursion satis�es a nonnegative-integer-valued measure 
onje
-ture.2. The re
ursion satis�es a measure 
onje
ture.3. The re
ursive de�ning axiom is satis�ed by an unique total fun
tion.4. The re
ursion always halts.Proof. Clearly 1 ) 2 .2 ) 3 . Assume the re
ursion in the de�nition of f satis�es a measure
onje
ture. Show that any two fun
tions, say f and g, that satisfythe de�ning tail re
ursive axiom for f are equal:Assume f and g satisfy these equations.(equal (f x) (equal (g x)(if (test x) (if (test x)(base x) (base x)(f (step x)))) (g (step x))))5



[The equation involving g is what is meant by \g satis�es thede�ning tail re
ursive axiom for f."℄Use the indu
tion suggested by the de�nition of f to prove (equal(f x)(g x)). The base 
ase is (test x) ) (equal (f x)(gx)). The indu
tion step, (not (test x)) ) (equal (f x)(gx)), follows from the indu
tion hypothesis, (not (test x)) )(equal (f (step x))(g (step x))).3 ) 4 . Assume the re
ursive de�ning axiom for f is satis�ed by anunique total fun
tion. Now 
losely follow the 
onstru
tion inManolios and Moore's defpun paper [5℄: De�ne a \
lo
ked" ver-sion of f.(defunf_n (x n)(de
lare (xargs :measure (nfix n)))(if (or (zp n) (test x))(base x)(f_n (step x)(- n 1))))Manolios and Moore use f_n to 
onstru
t a total fun
tion thatsatis�es the re
ursive de�ning axiom for f. Slightly modify their
onstru
tion to de�ne two apparently di�erent fun
tions that sat-isfy the re
ursive de�ning axiom for f.Use def
hoose to let (n_
h x) be an n su
h that (test(stepnx)),if su
h an n exists. The value of n_
h is not spe
i�ed otherwise.(defun g (x) (defun h (x)(if (test (step(n 
h x) x)) (if (test (step(n 
h x) x))(f_n x (n_
h x)) (f_n x (n_
h x))nil)) t))It should be fairly obvious that both g and h satisfy the de�ningaxiom for f. Sin
e there is exa
tly one fun
tion satisfying thede�ning axiom for f, it must be the 
ase that g = h, whi
h meansthat 8x(test(step(n 
h x)x)):4 ) 1 . Assume 8x9n(test(stepn x)). Let m(x) be the least nonneg-ative integer n su
h that (test(stepn x)). Then whenever (not(test x)), it is the 
ase that (< (m (step x))(m x)).6



This theorem suggests one way to show that the famous \3x+1" fun
tionalways terminates on all natural number inputs: It is suÆ
ient to show thede�ning axiom(equal (3x+1 x)(if (<= x 1)x(3x+1 (if (evenp x)(/ x 2)(+ (* 3 x) 1)))))is satis�ed by only one total fun
tion on the nonnegative integers. Thetermination of this fun
tion on all nonnegative integer inputs remains anopen problem.The following propositions show how mu
h of Theorem 1 holds for re-
ursive de�nitions that may not be tail re
ursive.Proposition 1 The following are equivalent for any fun
tion with a re
ur-sive de�nition.1. The re
ursion satis�es a nonnegative-integer-valued measure 
onje
-ture.2. The re
ursion satis�es a measure 
onje
ture.4. The re
ursion always halts.Proof. Clearly 1 ) 2 .Sin
e all des
ending 
hains, of elements related by a well-founded rela-tion, are �nite; 2 ) 4 .4 ) 1 . Assume the re
ursion always halts. Then the Canoni
al Mea-sure (essentially the minimal sta
k depth required for 
omputingthe value of the fun
tion on a given input, using the body of there
ursive de�nition.) des
ribed by M. Kaufmann and J S. Moore,in [2℄, is a nonnegative-integer-valued measure.Proposition 2 The following impli
ations hold for any fun
tion with a re-
ursive de�nition.Ea
h of these 7



1. The re
ursion satis�es a nonnegative-integer-valued measure 
onje
-ture.2. The re
ursion satis�es a measure 
onje
ture.4. The re
ursion always halts.implies3. The re
ursive de�ning axiom is satis�ed by an unique total fun
tion.Proposition 3 The following impli
ations 
ould fail for any fun
tion witha re
ursive de�nition.3. The re
ursive de�ning axiom is satis�ed by an unique total fun
tion.implies ea
h of these1. The re
ursion satis�es a nonnegative-integer-valued measure 
onje
-ture.2. The re
ursion satis�es a measure 
onje
ture.4. The re
ursion always halts.Proof. The equation(equal (f x)(if (f x)xx))is satis�ed by only one total fun
tion, namely the identity fun
tion, butthe re
ursion suggested by the equation does not terminate nor satisfyany measure 
onje
ture.Theorem 2 Let a and b be 
onstants. Suppose that the only 
onstraint onthe fun
tion f that mentions f is the de�ning tail re
ursive axiom for f.If ACL2 
an prove (equal (f a) b), then ACL2 
an also prove, that there
ursion for f terminates on input a.8



Proof. Assume (equal (f a) b) is a theorem.On
e more the 
onstru
tion in Manolios and Moore's defpun paper [5℄is 
losely followed: De�ne a \
lo
ked" version, su
h as f_n from above,of f. Choose any 
onstant 
 su
h that 
 6= b.Use f_n and 
 to 
onstru
t a total fun
tion that satis�es the re
ursivede�ning axiom for f.(defun f
 (x)(if (test (step(n 
h x) x))(f_n x (n_
h x))
))On
e again, it should be fairly obvious that f
 satis�es the de�ningaxiom for f. That is, the following holds.(equal (f
 x)(if (test x)(base x)(f
 (step x))))By fun
tional instantiation, (equal (f
 a) b) is a theorem. Sin
e 
 6=b, it follows from the de�nition of f
 that (test(step(n 
h a)a)).Tail Re
ursive InterpretersThis se
tion starts by 
losely following a similar se
tion in Manolios andMoore's defpun paper [5℄.An important 
lass of tail re
ursive fun
tions 
onsists of the \state ma-
hine interpreters" traditionally used in ACL2 to give operational semanti
s.We 
onsider one su
h interpreter, 
alled WyoM1. WyoM1 was used at theUniversity of Wyoming while tea
hing a 
lass, inspired by a similar 
lass atthe University of Texas, on formalizing the Java Virtual Ma
hine in ACL2.WyoM1 is very similar to an interpreter known as M2 at UT.A WyoM1 state is a pair 
onsisting of a 
all sta
k and a list of fun
tionde�nitions. The 
all sta
k is a sta
k of frames, ea
h frame 
orresponding toan a
tivation of some de�ned fun
tion. A frame 
ontains a program 
ounter,the 
ode for the fun
tion, bindings for the formal and lo
al variables of the9



fun
tion, and an operand sta
k. Ea
h fun
tion de�nition 
ontains the name,list of formal arguments, and list of instru
tions for some fun
tion.Here is the de�nition for a re
ursive fun
tion fa
t implementing fa
torial.(def
onst *fa
t-def*'(fa
t (n)(load n) ;; 0(ifgt 3) ;; 1(push 1) ;; 2(ret) ;; 3(load n) ;; 4(load n) ;; 5(push 1) ;; 6(sub) ;; 7(
all fa
t) ;; 8(mul) ;; 9(ret))) ;; 10Let step be the single-step state transition fun
tion for WyoM1. So(step s) is the state produ
ed by exe
uting the instru
tion indi
ated bythe program 
ounter in the top frame of the 
all sta
k of state s.The \
lo
ked" interpreter for WyoM1 is(defun run (s n)(if (zp n)s(run (step s)(- n 1))))An interpreter without a 
lo
k for WyoM1 is given below by run-w. (Run-w s)runs WyoM1, starting with state s, to termination, if a halted state 
an berea
hed by repeated steps. The value of (run-w s) on states that do notterminate is not spe
i�ed.(defun haltedp (s)(equal s (step s)))(defpun run-w (s)(if (haltedp s)s(run-w (step s)))) 10



The interpreter without a 
lo
k for WyoM1, run-w, 
an be used to stateand prove, in ACL2, the following WyoM1 program 
orre
tness result.First WyoM1 fun
tion de�nitions are given for sq whi
h squares its inputand max whi
h returns the maximum of its two inputs.(def
onst *sq-def* (def
onst *max-def*'(sq (n) '(max (x y)(load n) (load x)(dup) (load y)(mul) (sub)(ret))) (ifle 3)(load x)(ret)(load y)(ret)))Let s be the following state des
ribed by spe
ifying its top (and only) frameand list of fun
tion de�nitions.(modify nil:p
 0:lo
als lo
al-vars:sta
k s0:program '((load x) ;; 0(
all sq) ;; 1(
all fa
t) ;; 2(load x) ;; 3(
all fa
t) ;; 4(
all sq) ;; 5(
all max) ;; 6(store y) ;; 7(halt)) ;; 8:defs (list *sq-def**max-def**fa
t-def*)).Let x be the value of the variable 'x in (lo
als s). If x is a nonnegativeinteger and s is run to termination, then WyoM1 ends in the following statedes
ribed by indi
ating how the state s is modi�ed.11



(modify s:p
 8:lo
als (bind 'y (MAX (! (SQ x))(SQ (! x)))(lo
als s)))Here MAX, SQ, and ! are ACL2 fun
tions implementing the usual maximum,squaring, and fa
torial fun
tions. Here is the formal 
orre
tness result inACL2.(defthm prog-is-
orre
t-with-run-w(let* ((s (modify nil:p
 0:lo
als lo
al-vars:sta
k s0:program '((load x) ;; 0(
all sq) ;; 1(
all fa
t) ;; 2(load x) ;; 3(
all fa
t) ;; 4(
all sq) ;; 5(
all max) ;; 6(store y) ;; 7(halt)) ;; 8:defs (list *sq-def**max-def**fa
t-def*)))(x (binding 'x (lo
als s))))(implies (and (integerp x)(>= x 0))(equal (run-w s)(modify s:p
 8:lo
als (bind 'y (MAX (! (SQ x))(SQ (! x)))(lo
als s)))))):hints . . .)Remember that (run-w s) is not spe
i�ed for those states s for whi
hWyoM1 does not terminate. So for example, how do we know that for the12



state s initially given in the above defthm that WyoM1 a
tually halts andprodu
es the modi�ed state? Could it be that WyoM1 does not halt on sand the unspe
i�ed value of (run-w s) just happens to be the modi�ed stategiven in the defthm?The meta-theorem, Theorem 2, says that if ACL2 
an prove prog-is-
orre
t-with-run-w, then ACL2 
an also prove there is a nonnegative inte-ger n su
h that the statement of this theorem remains true when (run-w s)is repla
ed by (run s n). The proof of Theorem 2 is 
arefully followedusing haltedp for test, identity, ie., (identity x) = x for base, step forstep, run for stepn, the initial state s in the defthm for a, and the modi�edstate for b.(defthm prog-is-
orre
t-with-run(let* ((s (modify nil:p
 0:lo
als lo
al-vars:sta
k s0:program '((load x) ;; 0(
all sq) ;; 1(
all fa
t) ;; 2(load x) ;; 3(
all fa
t) ;; 4(
all sq) ;; 5(
all max) ;; 6(store y) ;; 7(halt)) ;; 8:defs (list *sq-def**max-def**fa
t-def*)))(x (binding 'x (lo
als s)))(n (nfix (nbr-steps-to-halt s))))(implies (and (integerp x)(>= x 0))(equal (run s n)(modify s:p
 8:lo
als (bind 'y (MAX (! (SQ x))(SQ (! x)))13



(lo
als s)))))):hints . . .)where nbr-steps-to-halt is the 
hoi
e fun
tion(def
hoosenbr-steps-to-halt (n)(s)(haltedp (run s n)))Re
exive Tail Re
ursionIf test, base, and step are already de�ned, then the defpun 
onstru
tionshows that the equation(equal (f x)(if (test x)(base x)(f (step x))))is satis�able by some total fun
tion. Manolios and Moore also 
onsider the
ase when (step x) mentions f. Equations with nested re
ursive 
alls aresometimes 
alled re
exive. Manolios and Moore show [5℄ that the problemof de
iding if a re
exive tail re
ursive equation is satis�able by some totalfun
tion is unde
idable. Sin
e the problem is unde
idable, there must be 
aseswhen no total fun
tion satis�es the given re
exive tail re
ursive equation.ACL2 
an verify the following two theorems.Theorem 3 Let 
 be a positive integer and let test, base, and step be totalfun
tions su
h that� (implies (test (base x))(test x))� base and step 
ommute:(equal (base (step x))(step (base x)))
14



� either the re
ursion with respe
t to base(�
 1) Æ step and test alwayshalts OR it never halts when x satis�es (not (test x)):[8x9n(test([base(�
 1) Æ step℄n x))℄_ [8x8n((not(test x))) (not(test([base(�
 1) Æ step℄n x))))℄Then there is a total fun
tion f that satis�es both the re
exive tail re
ursiveequation(equal (f x)(if (test x)(base x)(f
 (step x))))and the simpler tail re
ursive equation(equal (f x)(if (test x)(base x)(f (base(�
 1) (step x))))Theorem 4 Let 
 be a positive integer and let f, test, base, and step betotal fun
tions su
h that� f is re
exive tail re
ursive:(equal (f x)(if (test x)(base x)(f
 (step x))))� (implies (test (base x))(test x))� base and step 
ommute:(equal (base (step x))(step (base x))) 15



� re
ursion with respe
t to step and test always halts:8x9n(test(stepn x))Then f also satis�es the simpler tail re
ursive equation(equal (f x)(if (test x)(base x)(f (base(�
 1) (step x))))Corollary 1 (Knuth [1, 3, 4℄) Let 
 be a positive integer and let a; b >0; d be real numbers.1. There is a total fun
tion on the reals satisfying the re
exive tail re
ur-sive equation(equal (K x)(if (> x a)(- x b)(K
 (+ x d))))2. If (< (* (- 
 1) b) d) then there is an unique fun
tion on the realssatisfying the above re
exive tail re
ursive equation for K.Proof. Let (test x) be (> x a), (base x) be (- x b), and (step x) be(+ x d). Then ([base(�
 1) Æ step℄ x) is (+ x d (-(* (- 
 1) b)))and ([base(�
 1)Æstep℄n x) is (+ x (* n (+ d (-(* (- 
 1) b))))).If (< (* (- 
 1) b) d), then the re
ursion with respe
t to base(�
 1)Æstep and test always halts; otherwise the re
ursion never halts when xsatis�es (not (test x)). So by Theorem 3, there is a total fun
tionsatisfying the re
exive tail re
ursive equation for K.If (< (* (- 
 1) b) d), then (> d 0), so the re
ursion with respe
tto step and test always halts. Then by Theorem 4, K must also sat-isfy that theorem's simpler re
ursive equation. Sin
e (< (* (- 
 1)b)d), the re
ursion spe
i�ed in simpler re
ursive equation always halts, soby Theorem 1, the simpler equation is satis�ed by an unique fun
tion.Corollary 2 There is an unique fun
tion on the reals satisfying the re
exivetail re
ursive equation for M
Carthy's 91 fun
tion,16



(equal (M91 x)(if (> x 100)(- x 10)(M91 (M91 (+ x 11)))))Proof. By the previous Corollary.Referen
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