Generic Theories as Proof
Strategies

Wilfred J. Legato
National Security Agency

i Outline of Talk

= Background

s Loop Invariant Theory

= Tail Recursion Theory

= Alternative Induction Theory
= An Example

= Concluding Remarks

i A Floyd-Hoare Triple

{ N>0 }
X:=N
A:=0
LOOP: A=A+ X
X:=X-1

X>0 => GO TO LOOP
{ A=N*(N+1)/2 }

i A Floyd-Hoare Proof

= Find a loop invariant R(A,X)
X=0 A A+X*(X+1)/2=N*(N+1)/2

= Prove: (1) N>0 => R(0O,N)
(2) X>0 A R(A,X) => R(A+X,X-1)
(3) X<0 A R(A,X) => A=N*(N+1)/2

= Use identity X*(X+1)/2=X+(X-1)*X/2

i Weakest Precondition Model
= Denote the postcondition by Q(A,X,N)

= Mechanically derive
WP(A,X,N)
if X>1 wp(A+X,X-1,N) else Q(A+X,X-1,N)

= Prove: N>0 => wp(0,N,N)

Attempted Weakest
i Precondition Proof

= Induction patterned after wp yields:

= Base case:
N=1 => wp(O,N,N))

= Induction step:
N>1 A wp(O,N-1,N-1) => wp(O,N,N)

= Expansion of wp(0,N,N) to wp(N,N-1,N)
does not match the hypothesis.

i Capturing Proof Strategies

= We can prove weakest preconditions
with the same ease as Floyd-Hoare.

= We will identify alternative strategies to
deal with finding suitable inductions
when recursive functions are applied to
specialized arguments.

= We will use generic theories to capture
and apply these strategies.

i Loop Invariant Theory

= The most general weakest precondition
may be represented by:

(wps) = (if (bs) (gp s) (wp (sigma s)))

where b is the loop exit predicate,
sigma represents the loop body, and gp
is the postcondition.

i Loop Invariant Theory

= We constrain wp by:
(b's) => (wp s)=(gp s)
(not (b s)) => (wp (sigma s))=(wp s)

= Since these are treated as rewrite rules
the order of the equalities matters.

i Loop Invariant Theory
= We constrain @ measure function:
(o-p (measure s))
(not (b s)) =>
(o< (measure (sigma s)) (measure s))

in order to allow inductive proofs
about wp.

i Loop Invariant Theory

= Finally, we constrain a loop invariant r

by:

(not (b s)) A (rs) =>(r(sigmas)) (2)
(bs)A(rs)=>(qps) (3)
from which we prove

(rs) => (wp s) (1)

= This characterizes wp as the weakest
loop invariant.

Summary of the Tail Recursion
i Theory

= Our goal in this theory is to remove the

\\ Py / 4

a” component of state from the tail
recursive function

(gas) = (if (bbs)
(gt as)
(g (rho a s) (tau s)))

where tau is measure decreasing.

Summary of the Tail Recursion

i Theory

= We introduce an invariant rt to capture
underlying assumptions of the theory.

(not (bbs)) A(rtas) =>
(rt (rho a s) (tau s))

Summary of the Tail Recursion
i Theory

= We introduce functions op, h and hs
with properties that allow us to prove

(rtas) =>
(g a s)=(if (bb s)
(gt as)
(gt (op a (h s) s) (hs s)))

Summary of the Alternative
i Induction Theory

= This theory uses two tail recursive
functions

(fnl s)=(if (b1 s) (g1 s) (fn1 (sigmal s)))
(fn2 s)=(if (b2 s) (g2 s) (fn2 (sigma2 s)))

together with a mapping id-alt from the
domain of fnl to the domain of fn2, and
a loop invariant p on the domain of fnl.

Summary of the Alternative
i Induction Theory

= The key requirement in this theory is

(not (b1 s))A(ps) =>
(id-alt (sigmal s))=(sigma2 (id-alt s))

= When fnl and fn2 are identical, this
property states that id-alt and sigmal
commute.

Summary of the Alternative
i Induction Theory

= This theory allows us to prove

(ps) => (fnl s)=(fn2 (id-alt s))

= Notice that when fnl and fn2 are the
same and id-alt is measure decreasing,
id-alt defines an alternative induction.

Example Using the Loop
i Invariant Theory

= State consists of bytes A, N and flag C.

{ N>0 A NS=N A N*(N+1)/2<256 }

LDA #0 load A immediate with O

CLC clear the carry flag
LOOP: ADCN add with carry N to A

DEC N decrement N by 1

BNE LOOP branch if N>0 to LOOP

{ A=NS*(NS+1)/2 }

Example Using the Loop
i Invariant Theory

= The weakest precondition at LOOP is

(defun wp-loop (n a c ns)
gdeclare (xargs :measure (dec n)))
if gequal dec n) 0)
equal (mod (+ ca n) 2562
floor (* ns (1+ ns)) 2))

(wp-loop (dec n
mod (+ c a ng 256%

floor (+ ca n) 256

ns)))

Example Using the Loop
i Invariant Theory

= Where dec is defined by

(defun dec (n)
(if (zp n) 255 (1- n)))

= The weakest precondition at the
beginning of the program is

(defun wp-1 (n ns)
(wp-loop n 0 0 ns))

Example Using the Loop
i Invariant Theory

= The proof goal is

(defthm wp-loop-is-correct
(implies (and (not (zp n))
(equal ns n)
(< (floor (* n (1+ n)) 2)
256))
(wp-1 n ns)))

The Automated Loop Invariant

i Proof

:++ Define the loop invariant

(defun sum-invariant (n a c ns)
(and (not (zp n))
(< (+ a (floor (* n (1+ n)) 2)) 256)
(natp a)
(equal c 0)
(natp ns)
(equal (+ a (floor (* n (1+ n)) 2))
(floor (* ns (1+ ns)) 2))))

The Automated Loop Invariant

i Proof

;7» Instantiate the theory

(defthm wp-sum-loop-invariant
(implies (sum-invariant n a c ns)
(wp-loop n a c ns))
:hints ((loop-invariant-hint ; computed hint
'wp-loop ; concrete weakest precondition
'(sum-invariant n a c ns))))

(defthm wp-loop-is-correct
(implies (and (not (zp n))
(equal ns n)
(< (floor (* n (1+ n)) 2) 256))
(wp-1 n ns)))

i A Comparison of the Theories

= We compare the theories on the sum
program and the following multiply program.

{ F1=F1SAVE A F1<256 A F2<256 A LOW<256 }

LDX #8 load the X register immediate with 8

LDA #0 load the A register immediate with 0
LOOP ROR F1 rotate F1 right circular through carry

BCC ZCOEF branch on carry clear to ZCOEF

CLC clear the carry flag

ADC F2 add with carry F2 to the contents of A
ZCOEF ROR A rotate A right circular through carry

ROR LOW rotate LOW right circular through carry

DEX decrement the X register by 1

BNE LOOP branch if X is non-zero to LOOP

{ LOW + 256*A = F1SAVE*F2 }

i A Comparison of the Theories

= We count the number of supporting
lemmas needed to prove the two
programs with each of the generic
theories. We use Robert Krug’s
September 2003 modified ACL2 and
arithmetic-4 proof library as well as
NQTHM with my modularithmetic-98
proof library.

i A Comparison of the Theories

Theorem Count for the Sum Program

Generalization

Loop Invariant

Tail Recursion

Alt. Induction

ACL2

3

4

5

4

NQTHM

2

4

4

3

Theorem Count for the Multiply Program

Generalization

Loop Invariant

Tail Recursion

Alt. Induction

ACL2

6

12

18

11

NQTHM

8

11

19

11

i Conclusions

= Without automation generic theories are
cumbersome to use compared with straight
forward generalization.

= With automation they are effective means for
high level proof structuring.

= Based upon these examples, ACL2 and
NQTHM are roughly comparable in their ability
to support arithmetic proofs over the naturals.

