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tJ Moore has dis
overed an elegant approa
h for verifying state invariants of imperativeprograms without having to write a veri�
ation 
ondition generator (VCG) or 
lo
k fun
tion.Users need only make assertions about sele
ted 
utpoint instru
tions of a program, su
h asloop tests and subroutine entry and exit points. ACL2's rewriter is then used to automati
allypropagate these assertions through the intervening instru
tions.We extend this methodology so that users 
an similarly prove termination properties ofprograms via indu
tion over the sequen
e of 
utpoint instru
tions the program exe
utes. Justas with Moore's methodology, there is no need to spe
ify a VCG or program-spe
i�
 
lo
kfun
tions. These termination proofs 
an then be used to write eÆ
ient exe
utable programsimulators in ACL2 that don't require step-
ounters but are still guaranteed to terminate.1 Introdu
tionIn his paper Indu
tive Assertions and Operational Semanti
s, J Moore des
ribes a simple and elegantmethod for proving partial 
orre
tness results for imperative programs [12℄. What interests us mostabout his approa
h is the fa
t that it requires no 
lo
k fun
tion or veri�
ation 
ondition generator.This frees the user from the heada
he of de�ning state invariants by providing assertions for everyprogram point. Instead, the user de�nes assertions only on spe
i�ed 
utpoints, su
h as loop testsand the entry and exit points of programs. ACL2's rewriter is used to symboli
ally simulate theprogram in order to propogate these assertions through all the rea
hable program points. This�Daron Vroon is 
urrently aÆliated with the Georgia Institute of Te
hnology's College of Computing.1



is done using tail re
ursive partial fun
tions, whi
h are admissable to ACL2 due to the work ofManolios and Moore who proved that every su
h partial fun
tion has an admissable total fun
tionas a witness [10℄.In this paper, we present a variation on this method, built on the same 
on
epts, whi
h 
an easilybe extended to reason about the termination of imperative programs. As with Moore's method, thesetermination proofs require no 
lo
k fun
tions, VCGs, or assertions de�ned on program points otherthan sele
t 
utpoints. Thus, by our variation on Moore's approa
h to partial 
orre
tness, users 
anprove the partial 
orre
tness of their programs, and then extend this result to one of total 
orre
tnesswith minimal e�ort.In addition, our approa
h to total 
orre
tness proofs 
an almost automati
ally generate eÆ
ient
lo
kless simulators. In general, the operational semanti
s of an imperative programming languagedo not guarantee termination. Thus, in order to admit a fun
tion into ACL2 to simulate arbitraryprograms written in these languages, users must in
lude a 
lo
k parameter, whi
h gives the maximumnumber of steps to run the program before halting. Su
h fun
tions take the form(defun run (k state)(if (zp k)state(run (1- k) (next state))))However, given that we know that a program terminates, it would be ni
e to have a simulationfun
tion of the naive form form (i.e. without any 
ounters):(defun run (state)(if (halted state)state(run (next state))))Given a program proven to terminate using our method, we have devised a way to automati
allygenerate a fun
tion whose exe
utable de�nition is of this form using ACL2's mbtma
ro for generatingguarded exe
utable 
ounterparts. It is therefore an eÆ
ient 
lo
kless simulation fun
tion that runsa program to 
ompletion and is guaranteed to terminate.We start with a detailed des
ription of our total 
orre
tness method in Se
tion 2. This is followedby a des
ription in Se
tion 3 of how to obtain eÆ
ient simulators in ACL2 by our approa
h. Then, inSe
tion 4, we present a more substantial example that brings together the 
on
epts of the previoustwo se
tions. Finally, we present related work and 
on
lude in Se
tions 5 and 6.2 The termination proof methodIn this se
tion we demonstrate the general termination proof method on the simplest state ma
hinemodel we 
ould think of that still has the potential for non-termination. However, we disable mostof the model's de�nitions, so that the termination proof makes expli
it exa
tly what ma
hine modelassumptions it relies on. This also paves the way for our future goal of en
apsulating the proof andturning it into a generi
 ACL2 book.
2



2.1 A simple state ma
hine modelOur example ma
hine model, 
alled mstate-model, 
onsists of a stobj 
ontaining only an integerprogram 
ounter �eld.(defstobj mstate(prog
 :type integer :initially 0))mstate-model's next-state fun
tion simply de
rements the program 
ounter �eld of mstate.(defund next (mstate)(de
lare (xargs :stobjs (mstate)))(update-prog
 (1- (prog
 mstate)) mstate))The theory also requires us to give a predi
ate stating whether a ma
hine state is a 
utpoint. Formstate-model we arbitrarily 
hoose our 
utpoint states to be those with a non-negative program
ounter that is evenly divisible by 10.(defund at-
utpoint (mstate)(de
lare (xargs :stobjs (mstate)))(and (mstatep mstate)(natp (prog
 mstate))(equal (mod (prog
 mstate) 10)0)))We need to spe
ify what it means for the ma
hine to have \halted". We pla
e quotes around theword \halted" be
ause for most appli
ations we don't a
tually expe
t the ma
hine to halt on
e thatstate has been rea
hed. Instead, we expe
t to be reasoning mostly about subroutines that will returnto the 
aller and 
ontinue exe
uting when it has �nished. Therefore, we prefer to 
all su
h statesexitpoints. The termination proof states that all 
utpoint states eventually rea
h an exitpoint state.The resulting theorems do not state anything about what happens after an exitpoint is rea
hed. Inthe mstate model, we spe
ify an exitpoint to have been rea
hed when the program 
ounter is zero.(defund at-exitpoint (mstate)(de
lare (xargs :stobjs (mstate)))(and (mstatep mstate)(equal (prog
 mstate)0)))Our theory also makes a te
hni
al requirement that nil not be a 
utpoint. This requirementshould be easy to meet for non-trivial ma
hine models.(defthm nil-not-
utpoint(not (at-
utpoint nil)))The next-
utpoint fun
tion, des
ribed in Se
tion 2.2.3, will return the default value nil whenno 
utpoint is rea
hable.We use the following de�nition of run to simulate the ma
hine model a given number of steps.The expression (at-
utpoint (run n mstate)) tests whether stepping mstate n times results ina 
utpoint state. 3



(defun run (n mstate)(de
lare (xargs :stobjs (mstate):guard (natp n)))(if (zp n)mstate(let ((mstate (next mstate)))(run (1- n) mstate))))2.2 The termination theoryGiven a ma
hine model satisfying the requirements above, the next step is to de�ne a theory thateases the pro
ess of proving that all 
utpoint states eventually lead to an exitpoint state. The maintri
k we will employ is to partially de�ne a generi
 
lo
k fun
tion, whi
h we 
all a partial 
lo
kfun
tion. It is de�ned using the ACL2 book defpun [10℄. The partial 
lo
k fun
tion returns theminimum number of steps the ma
hine must take until a 
utpoint state is rea
hed. If no 
utpointstate is rea
hable then the fun
tion returns an arbitrary value. Although its de�nition mentionsnext and at-
utpoint, the body of the partial 
lo
k fun
tion is always de�ned in the same way,regardless of the ma
hine model or program we are verifying. This means we 
an in prin
iple 
reatea ma
ro to generate the 
lo
k fun
tion automati
ally.Although a partially-de�ned 
lo
k fun
tion does not sound very useful, it turns out we 
anuse run to logi
ally test whether the fun
tion has returned the 
orre
t value. This test allows us todetermine whether a 
utpoint state is rea
hable, and also allows us to de�ne a (non-exe
utable) total
lo
k fun
tion steps-to-
utpoint that from a starting state returns the number of steps until thema
hine 
an rea
h the next 
utpoint, or else returns (omega) if no 
utpoint state is rea
hable. We
an then use properties of ordinal arithmeti
 to derive stronger rewrite rules for steps-to-
utpointthan we 
an for the original partial 
lo
k fun
tion in terms of whi
h it is de�ned.2.2.1 The partial 
lo
k fun
tionIn our theory the partial 
lo
k fun
tion is 
alled steps-to-
utpoint-tail. It is de�ned withACL2's defpun ma
ro.(defpun steps-to-
utpoint-tail (n mstate)(if (at-
utpoint mstate)n(steps-to-
utpoint-tail (1+ n) (next mstate))))steps-to-
utpoint-tail is de�ned tail-re
ursively, and takes an initial step-
ounter parametern. It returns the minimum number of steps to the next 
utpoint minus n, when a 
utpoint state isrea
hable. Otherwise the fun
tion is unspe
i�ed.Using ACL2's def
hoose 
onstru
t, a spe
i�
ation of a tail-re
ursive fun
tion 
an always be
ompleted to a non-exe
utable total fun
tion de�nition. This is pre
isely what the defpun ma
rodoes, generating the theorem steps-to- 
utpoint-tail-def, whi
h states:(equal (steps-to-
utpoint-tail n mstate)(if (at-
utpoint mstate)n(steps-to-
utpoint-tail (1+ n) (next mstate)))).4



The steps-to-
utpoint-tail fun
tion satis�es several key invariant properties. They areproved simultaneously with the theorem(defthmd steps-to-
utpoint-tail-inv(implies (and (at-
utpoint (run k mstate))(integerp steps))(let* ((result (steps-to-
utpoint-tail steps mstate))(
utpoint-steps (- result steps)))(and (integerp result)(natp 
utpoint-steps)(implies (natp k)(<= 
utpoint-steps k))(at-
utpoint (run 
utpoint-steps mstate))))))Together these properties state that if a 
utpoint state is rea
hable in a �nite number of stepsfrom mstate, then� steps-to-
utpoint-tail returns an integer value.� The value steps-to-
utpoint-tail returns is always greater than or equal to its initial step-
ounter parameter steps.� Given any 
utpoint state (not ne
essarily the �rst one) rea
hable in k steps, where k � 0, thenthe value returned by steps-to-
utpoint-tail minus steps is less than or equal to k.In other words, the fun
tion has found the number of steps needed to get to the next 
utpointstate.� The state is a
tually a 
utpoint state.An important 
orollary states that when a 
utpoint state is rea
hable, then the initial step-
ounter parameter 
an be moved outside of the partial step fun
tion.(defthm steps-to-
utpoint-tail-diff(implies (and (at-
utpoint (run k mstate))(syntaxp (not (equal n ''0)))(integerp n))(equal (steps-to-
utpoint-tail n mstate)(+ n (steps-to-
utpoint-tail 0 mstate)))))2.2.2 Total 
lo
k fun
tionsWe have extended the partial 
lo
k fun
tion steps-to-
utpoint-tail into a total 
lo
k fun
tion
alled steps-to-
utpoint. We do this by 
alling the partial 
lo
k fun
tion with an initial step-
ounter parameter of zero, and then testing whether the fun
tion was able to rea
h a 
utpoint state.If so, then steps-to-
utpoint returns the number of steps to that 
utpoint, otherwise it returns(omega), the �rst in�nite ordinal, indi
ating that a 
utpoint 
an not be rea
hed in a �nite numberof steps. 5



(defun steps-to-
utpoint (mstate)(de
lare (xargs :non-exe
utable t))(let ((steps (steps-to-
utpoint-tail 0 mstate)))(if (at-
utpoint (run steps mstate))steps(omega))))For Turing-
omplete ma
hine models this fun
tion is not 
omputable, although it is still a well-de�ned total fun
tion in ACL2's logi
. However, steps-to-
utpoint is still a useful fun
tion.Logi
ally the partial 
lo
k fun
tion steps-to-
utpoint-tail always returns some value. If thevalue is a natural number, then run will step the ma
hine state that number of times. Otherwiserun will just return mstate itself. In either 
ase we know that the state returned by run is rea
hablefrom mstate.Furthermore, we know that if that state is a 
utpoint state, then a 
utpoint state is rea
hable frommstate. So from the theorem steps-to-
utpoint-tail-invwe get that steps-to-
utpoint-tailreturns the 
orre
t value in this 
ase.On the other hand, if no 
utpoint state is rea
hable then run will return a non-
utpoint state.Thus the formula (at-
utpoint (run steps mstate))) in the de�nition of steps-to-
utpointfaithfully tests whether a 
utpoint state is rea
hable from the input state.Although the fun
tion steps-to-
utpoint un
omputable in general, it 
an be evaluated onwell-
hosen 
on
rete ma
hine models. In fa
t, for many ma
hine programs it 
an be automati
allysimpli�ed by the following rewrite rules.(defthm steps-to-
utpoint-zero(implies (at-
utpoint mstate)(equal (steps-to-
utpoint mstate) 0)))(defthm steps-to-
utpoint-nonzero-intro(implies (not (at-
utpoint mstate))(equal (steps-to-
utpoint mstate)(o+ 1 (steps-to-
utpoint (next mstate))))))These rewrite rules 
an be used to turn ACL2's rewriter into a symboli
 simulator. In any subgoal
ontaining an expression of the form (steps-to-
utpoint term), where term is a sub-expressionrepresenting a ma
hine state, ACL2 will iteratively apply steps-to-
utpoint-nonzero- intro aslong as it 
an dis
harge the hypothesis of the rule. There are three possible out
omes of this symboli
simulation pro
ess:� There is some expanded expression (at-
utpoint (next (� � � (next term) � � �))) 
ontain-ing zero or more o

urren
es of next that ACL2 
an simplify to true. In this 
ase the rulesteps-to-
utpoint-zero will eventually �re. The end result is that ACL2 will dedu
e thatthe original expression (steps-to-
utpoint term) is equal to the expanded expression (o+1 (� � � (o+ 1 0) � � �)), whi
h will be simpli�ed to a 
onstant number.� During the symboli
 simulation pro
ess there is some expanded ma
hine state term 0 su
h thatACL2 
an't simplify (at-
utpoint term 0) to either true or false. In this 
ase the original(steps-to-
utpoint term) expression will end up being simpli�ed to(o+ k (steps-to-
utpoint term 0)), for some natural number k. It means that the symboli
6



simulation pro
ess is not powerful enough for the subgoal this expression o

urs in. The userneeds to strengthen the rules asso
iated with their ma
hine model so that ACL2 
an de
idewhether term 0 is a 
utpoint state or not.� ACL2 
an simplify every sequen
e of terms (at-
utpoint (next (� � � (next term) � � �)))
ontaining zero or more o

urren
es of next to false. This means that term 
an not rea
h a
utpoint state. However, ACL2 
an not dete
t this and instead 
ontinues rewriting until it isinterrupted or runs out of memory. In this 
ase the user must add a new 
utpoint state alongthe path of the symboli
 simulation to break the 
y
le.The main advantages of steps-to-
utpoint's rewrite rules are that their proofs aren't spe
i�
to the underlying ma
hine model, and that they are valid regardless of whether a 
utpoint state isrea
hable or not. Thus they 
an be used to automati
ally 
al
ulate the number of steps needed untilthe next 
utpoint state is rea
hed (if there is su
h a state). This should lead to more automatedsafety and termination proofs about the ma
hine program.2.2.3 Computing rea
hable 
utpoint statesWe 
an now use the run and steps-to-
utpoint fun
tions to de�ne a fun
tion that steps thema
hine to the next 
utpoint state, provided it exists.The fun
tion next-
utpoint returns the next 
utpoint state rea
hable from a given startingstate, if there is one. However, if a 
utpoint state is not rea
hable then next-
utpoint returns thedefault value nil, whi
h we require to be a non-
utpoint state.(defun next-
utpoint (mstate)(de
lare (xargs :non-exe
utable t))(let ((steps (steps-to-
utpoint mstate)))(if (natp steps)(run steps mstate)nil)))(defthm nil-not-
utpoint(not (at-
utpoint nil)))This de�nition of next-
utpoint leads to the two simple symboli
 simulation rules below. Inparti
ular, returning a default value when a 
utpoint state is unrea
hable allows a simpler hypothesisfor the se
ond rewrite rule.(defthm next-
utpoint-at-
utpoint(implies (at-
utpoint mstate)(equal (next-
utpoint mstate)mstate)))(defthmd next-
utpoint-intro-next(implies (not (at-
utpoint mstate))(equal (next-
utpoint mstate)(next-
utpoint (next mstate)))))7



Finally, be
ause we forbid the default value nil from being a 
utpoint state, we know that if thevalue returned by next-
utpoint is a 
utpoint, then that state is rea
hable in a �nite number ofsteps from the starting state:(defthm next-
utpoint-rea
hes-
utpoint(iff (at-
utpoint (next-
utpoint mstate))(natp (steps-to-
utpoint mstate))))2.3 Reasoning about 
utpointsOur main goal is to prove that an exitpoint state is eventually rea
hed from any 
utpoint state. Wea
hieve this by providing a measure fun
tion 
utpoint-measure on the 
utpoint states, and thenprove by ordinal indu
tion on this measure that an exitpoint is eventually rea
hed.For mstate-model the 
utpoint measure fun
tion just observes the value of the 
urrent program
ounter. We require that the measure fun
tion always returns a valid ACL2 ordinal.(defun 
utpoint-measure (mstate)(de
lare (xargs :stobjs (mstate)))(nfix (prog
 mstate)))(defthm 
utpoint-measure-is-ordinal(o-p (
utpoint-measure mstate)))Next, we de�ne a fun
tion 
utpoint-to-
utpoint that atomi
ally transitions from one 
utpointstate to the next one, if it exists.(defun 
utpoint-to-
utpoint (mstate)(de
lare (xargs :non-exe
utable t))(next-
utpoint (next mstate)))By expanding the de�nition of 
utpoint-to-
utpoint, ACL2 
an prove by symboli
 simulationthat if a 
utpoint state is not an exitpoint then another 
utpoint state 
an be rea
hed, and thatthe measure of that next 
utpoint has de
reased. The �rst of these three theorems below alsodemonstrates how partial 
orre
tness results 
an be proved by symboli
 simulation with (extended)partial 
lo
k fun
tions.(defthm steps-to-next-
utpoint-natp(implies (and (at-
utpoint mstate)(not (at-exitpoint mstate)))(natp (steps-to-
utpoint (next mstate)))))(defthm 
utpoint-to-
utpoint-returns-
utpoint-state(implies (natp (steps-to-
utpoint (next mstate)))(at-
utpoint (
utpoint-to-
utpoint mstate))))(defthm 
utpoint-measure-de
reases(implies (and (at-
utpoint mstate)(not (at-exitpoint mstate)))(o< (
utpoint-measure (
utpoint-to-
utpoint mstate))(
utpoint-measure mstate))))8



A few basi
 lemmas about modular arithmeti
 are needed in mstate-model for the symboli
simulation to su

eed, sin
e at-
utpoint and next are de�ned in terms of the mod operator andsubtra
tion, respe
tively.The fa
t that the 
utpoint measure de
reases allows us to de�ne a total fun
tion that from any
utpoint state returns the �rst rea
hable exitpoint state.(defun next-exitpoint (mstate)(de
lare (xargs :non-exe
utable t:measure (
utpoint-measure mstate)))(
ond ((not (at-
utpoint mstate)) mstate)((at-exitpoint mstate) mstate)(t (next-exitpoint (
utpoint-to-
utpoint mstate)))))We 
an �nally prove that next-exitpoint behaves 
orre
tly, and that 
utpoint states eventuallylead to exitpoint states.(defun steps-to-exitpoint (mstate)(de
lare (xargs :non-exe
utable t:measure (
utpoint-measure mstate)))(
ond ((not (at-
utpoint mstate)) 0)((at-exitpoint mstate) 0)(t (+ 1 (steps-to-
utpoint (next mstate))(steps-to-exitpoint (
utpoint-to-
utpoint mstate))))))(defthmd next-exitpoint-
orre
t(implies (at-
utpoint mstate)(equal (run (steps-to-exitpoint mstate) mstate)(next-exitpoint mstate))))(defthm at-
utpoint-implies-rea
hes-exitpoint(implies (at-
utpoint mstate)(at-exitpoint (next-exitpoint mstate))))These theorems are proved by ordinal indu
tion on 
utpoint-measure, derived by ACL2 fromthe de�nitions of steps-to-exitpoint and next-exitpoint, respe
tively.3 EÆ
ient simulators and ACL2 limitationsWe would like to take advantage of our termination proof method to build eÆ
ient terminating ma-
hine simulators that do not require step-
ounter parameters. As a �rst step, 
onsider the followingstobj-
ompliant version of next-
utpoint (where dummy-mstate 
reates some valid mstate thatisn't a 
utpoint):(defun next-
utpoint-exe
 (mstate)(de
lare (xargs :stobjs (mstate):measure (steps-to-
utpoint mstate):guard (and (mstatep mstate)(natp (steps-to-
utpoint mstate)))))9



(if (mbt (and (mstatep mstate)(natp (steps-to-
utpoint mstate))))(if (at-
utpoint mstate)mstate(let ((mstate (next mstate)))(next-
utpoint-exe
 mstate)))(dummy-mstate mstate))).The mbt ma
ro utilized here stands for \must be true" and is used to introdu
e a test that is notto be evaluated. Logi
ally, the test is ne
essary to prove termination. However, in pra
ti
e the guard
he
k assures that the body of the mbt is true, so it doesn't need to be evaluated when exe
utingthe fun
tion. Thus, the exe
utable version of next-
utpoint-exe
 is just the \then" bran
h ofthe outer if statement. The dummy-mstate fun
tion makes mstate into a valid mstate that is notan exitpoint. This is ne
essary sin
e the rules of stobj use require that any fun
tion that altersthe stobj returns it. Given the theory presented in Se
tion 2, ACL2 is able to prove the followingproperties about the guard:(defthm mstatep-next(implies (mstatep mstate)(mstatep (next mstate))))(defthm natp-steps-to-
utpoint-next(implies (and (mstatep mstate)(not (at-
utpoint mstate))(natp (steps-to-
utpoint mstate)))(natp (steps-to-
utpoint (next mstate)))))Together these properties imply that the guard 
onje
tures for next-
utpoint-exe
 are satis�ed.However, our guard is not exe
utable, sin
e it 
alls the non-exe
utable fun
tion, steps-to-
utpoint.ACL2 version 2.8 requires that all guards of exe
utable fun
tions be exe
utable, so that the guard
an be 
he
ked when the user is invoking the fun
tion at the intera
tive prompt. This means thatwe 
an't verify the guards for next-
utpoint-exe
. This is unfortunate be
ause it prevents thefun
tion from being 
ompiled in 
ontexts where the guard is stati
ally known to hold, su
h as inthis eÆ
ient version of 
utpoint-to-
utpoint:(defun 
utpoint-to-
utpoint-exe
 (mstate)(de
lare (xargs :stobjs (mstate):guard (and (at-
utpoint mstate)(not (at-exitpoint mstate)))))(let ((mstate (next mstate)))(next-
utpoint-exe
 mstate)))In this 
ase the guard for 
utpoint-to-
utpoint-exe
 is exe
utable, and moreover it impliesthe guard for the 
all to next-
utpoint-exe
 holds by natp-steps-to-
utpoint-next above andsteps-to-next-
utpoint-natp (Se
tion 2.3). Thus we see that invoking the exe
utable de�nitionof next-
utpoint-exe
 in this 
ontext should not 
ause any logi
al in
onsisten
y or non-terminationproblems. 10



3.1 The elegant solution: a modest proposalACL2 
urrently allows the de�nition of an exe
utable fun
tion whose body 
ontains a 
all to a non-exe
utable fun
tion. The result of running su
h a fun
tion is that it runs normally until it rea
hesthe non-exe
utable fun
tion 
all, at whi
h time it throws an error. If the exe
ution never rea
hesthis 
all, the fun
tion terminates normally.We propose that ACL2 take a similar poli
y with regards to fun
tion guards. As we pointedout above, a fun
tion's guard is not evaluated in the 
ase where the fun
tion is 
alled from anotherfun
tion whose guards have been veri�ed. In this 
ase, the guard is proven to hold when the fun
tionis 
alled, and therefore known to hold stati
ally. In the 
ase where ACL2 attempts to evaluate a non-exe
utable guard, an error 
an be thrown. We feel that this poli
y would be more 
onsistant withthe already existing poli
y of allowing non-exe
utable fun
tion 
alls within exe
utable fun
tions.A more aggressive approa
h would be to 
all the simpli�er on non-exe
utable guards at theprompt, and if they simplify to true then to invoke the fun
tion's exe
utable 
ounterpart. Even moredaring would be to try to simplify non-exe
utable guards during subgoal proofs (???). However, 
aremust be taken in this 
ase not to rely on subgoal assumptions, sin
e these assumptions may not holdin the ACL2 runtime environment.3.2 A workaroundOur proposed 
hange to ACL2 would allow us to de�ne our eÆ
ient 
lo
kless simulator without anyadditional e�ort. However, we have devised a way to work around the limitation in ACL2's guardpoli
y. It involves using ACL2's more lenient poli
y of allowing exe
utable fun
tions to 
ontain 
allsto non-exe
utable fun
tions in order to de�ne an exe
utable version of steps-to-
utpoint. Themain diÆ
ulty here involves two of ACL2's ne
essarily stri
t rules for using stobjs. The �rst saysthat a stobj-
ompliant fun
tion 
annot pass a stobj to a non-stobj-
ompliant fun
tion. Thus,we 
annot pass mstate to steps-to-
utpoint-tail. The se
ond is that any stobj-
ompliantfun
tion that alters a stobj must return that stobj. Our steps-to-
utpoint fun
tion 
alls run,whi
h alters the mstate, but we want to return the number of steps to the next 
utpoint, not themstate.In order to get around these problems, we 
reated a way to 
opy data from a stobj to a normalobje
t with the same logi
al stru
ture as the stobj, and vi
e versa. The result is a 
ommand we
all defstobj+. This 
ommand has the same general form as a defstobj 
ommand. However, inaddition to 
reating a stobj with all the normal fun
tionality, it provides fun
tions for 
opying toand from the stobj as well as proofs that these fun
tions are logi
ally identity fun
tions. For ourmstate example, we alter the de�nition of mstate to use defstobj+ instead of defstobj:(defstobj+ mstate(prog
 :type integer :initially 0))In addition to the normal fun
tionality, this 
ommand provides the following fun
tions:(defun logi
al-mstatep (x)(de
lare (xargs :guard t))(and (true-listp x)(equal (len x) 1)(prog
p (nth *prog
* x)))) 11



(defun 
opy-to-mstate (
opy mstate)(de
lare (xargs :stobjs (mstate):guard (logi
al-mstatep 
opy)))(let* ((mstate (update-prog
 (nth *prog
* 
opy)mstate)))mstate))(defun 
opy-from-mstate (mstate)(de
lare (xargs :stobjs (mstate)))(list (prog
 mstate)))as well as the following theorems:(defthm logi
al-mstatep-mstatep(equal (logi
al-mstatep x) (mstatep x)))(defthm 
opy-to-mstate-noop(implies (and (mstatep x) (mstatep y))(equal (
opy-to-mstate x y) x)))(defthm 
opy-from-mstate-noop(implies (mstatep mstate)(equal (
opy-from-mstate mstate)mstate)))These de�nitions and theorems are stobj-spe
i�
, and work for any stobj stru
ture (even inthe presen
e of array �elds). In addition, the defstobj+ book, in whi
h the 
ommand is de�ned,
ontains a 
ommand 
alled with-
opy-of-stobj. This ma
ro has the same general form as thewith-lo
al-stobj. It 
reates a lo
al stobj that is a 
opy of the global one and performs all thea
tions spe
i�ed within the body on that lo
al 
opy, and not the global one.With these two features 
ombined, we 
an 
reate an exe
utable version of our steps-to-
utpointfun
tion:(defun steps-to-
utpoint-exe
 (mstate)(de
lare (xargs :stobjs (mstate)))(let ((steps (steps-to-
utpoint-tail 0 (
opy-from-mstate mstate))))(if (and (natp steps) ;the number of steps is a natural number.(with-
opy-of-stobj ;running a 
opy of mstate forward steps stepsmstate ;gives us a 
utpoint.(mv-let (result mstate)(let ((mstate (run steps mstate)))(mv (at-
utpoint mstate) mstate))result)))steps(omega))))By 
alling steps-to-
utpoint-tail on a non-stobj 
opy of mstate, we no longer pass ourstobj to a non-stobj-
ompliant fun
tion. To bypass the problem 
aused by altering mstate without12



returning it, we use the with-
opy-of-stobj ma
ro. We run a dupli
ate of mstate forward to besure the 
utpoint is a
tually rea
hable. The parameter mstate is untou
hed through this wholepro
ess. Therefore, we 
an legally return the value of steps or (omega) without returning themstate. So now we have an exe
utable version of our steps-to-
utpoint fun
tion, as we 
an provein ACL2:(defthm steps-to-
utpoint-exe
-steps-to-
utpoint(implies (mstatep mstate)(equal (steps-to-
utpoint-exe
 mstate)(steps-to-
utpoint mstate))))Using steps-to-
utpoint-exe
, we 
an verify the guards of both next-
utpoint-exe
 (on
ewe repla
e steps-to-
utpointwith steps-to-
utpoint-exe
) and 
utpoint-to-
utpoint-exe
.Finally, we 
an use these fun
tions to 
reate our 
lo
kless simulator:(defun fast-
utpoint-to-
utpoint (mstate)(de
lare (xargs :stobjs (mstate):measure (
utpoint-measure mstate):guard (at-
utpoint mstate)))(if (mbt (at-
utpoint mstate))(if (at-exitpoint mstate)mstate(let ((mstate (
utpoint-to-
utpoint-exe
 mstate)))(fast-
utpoint-to-
utpoint mstate)))(dummy-mstate mstate)))4 Putting it all together: Fibbona

i sequen
e on the TINYMa
hineWe have presented our method for proving termination using 
lo
kless simulators, as well as amethod for extending that termination proof to 
reate eÆ
ient 
lo
kless simulators. In this se
tionwe provide a more realisti
 example to demonstrate how it all �ts together.The semanti
s of this example are provided by the TINY model, a small, sta
k-based ma
hine�rst presented in [6℄ as a high-speed simulator example using stobjs. The Fibona

i sequen
e isthe sequen
e whose �rst two elements are 1, and every subsequent element of whi
h is the sumof the previous two elements: (1; 1; 2; 3; 5; 8; 13; : : :). Our fib fun
tion takes a positive integer, n,and returns the nth value in the Fibona

i sequen
e. The spe
i�
ation for this fun
tion, written inACL2, is the following:(defun fib-spe
 (n)(
ond ((not (integerp n)) 0)((< n 0) 1)((equal n 0) 1)((equal n 1) 1)(t (logext *word-size* (+ (fib-spe
 (- n 1)) (fib-spe
 (- n 2)))))))13



Figure 1 TINY assembly 
ode for �b program(pushsi 1 ;100 start-prog-addressdup ;102dup ;103pop 20 ;104 fib0 = 1;pop 21 ;106 fib1 = 1;sub ;108dup ;109 loop-labeljumpz 127 ;110 if n = 0, goto done-label;pushs 20 ;112dup ;114pushs 21 ;115add ;117pop 20 ;118 fib0 = fib1;pop 21 ;120 fib1 = fib0 (old value) + fib1;pushsi 1 ;122sub ;124 n = n-1;jump 109 ;125 goto loop-label;pushs 20 ;127 done-labeladd ;129 return fib0 + n;halt) ;130 halt-prog-addresswhere (logext n x) returns the integer 
orresponding to the low n bits of x interpreted as a signedinteger, and *word-size* is the number of bits in a word in TINY, whi
h is 32. The fib programwritten in the TINY assembly language isThe program addresses are given immediately to the right of the instru
tions. Note that ar-guments take up 1 address spa
e ea
h, so that every address in the program is not ne
essarily aninstru
tion. To the right of the addresses are the 
utpoint labels. Finally, right of those are some
omments to help 
larify the 
ode. Basi
ally, the two most re
ently 
omputed values of the Fibona

isequen
e are stored in addresses 20 and 21. Ea
h iteration of the loop puts the sum of the valuesin these addresses in 21, and moves the old value of 21 to 20. The 
ounter (n) is maintained on thesta
k. It is assumed that this 
ounter is on the top of the sta
k at the beginning of the program.Note that at ea
h 
utpoint, the 
ounter is the only thing on the sta
k.The basi
 fun
tions for reasoning about arbitrary 
utpoints in the TINY model are in Figure 2.The at-
utpoint fun
tion 
aptures several important invariants of our program. First, it 
he
ksif our program 
ounter (prog
) is one of the 
utpoint addresses. Se
ond, it veri�es that the �bprogram is loaded into memory at the appropriate lo
ation. Third, it makes sure that tiny-stateis indeed a tiny-state stobj. Next, it 
he
ks that there is only one item on the sta
k (whi
h isour loop 
ounter). Finally, it veri�es that the loop 
ounter has the right value (dtos-val gets thevalue o� the top of the sta
k).Our dummy-state fun
tion puts all the default �eld values into tiny-state. It does this by
reating a fresh lo
al stobj with with-lo
al-stobj, whi
h it 
opies into the global stobj using the
opy-to-tiny-state and 
opy-from-tiny-state fun
tions 
reated by the defstobj+ 
onstru
t.This is equivalent to setting tiny-state equal to (
reate-tiny-state).14



Figure 2 Basi
 
utpoint fun
tions for �b on TINY(def
onst *fib-
utpoints*(list *prog-start-address* *loop-label* *done-label* *prog-halt-address*))(defun at-
utpoint (tiny-state)(de
lare (xargs :stobjs (tiny-state)))(and (member (prog
 tiny-state) *fib-
utpoints*)(program-loaded tiny-state *fib-prog* *prog-start-address*)(tiny-statep tiny-state)(equal (dtos tiny-state) *init-dtos*)(
ond ((equal (prog
 tiny-state) *prog-start-address*)(< 0 (dtos-val tiny-state 0)))((equal (prog
 tiny-state) *loop-label*)(<= 0 (dtos-val tiny-state 0)))((equal (prog
 tiny-state) *done-label*)(= 0 (dtos-val tiny-state 0)))(t t))))(defun dummy-state (tiny-state)(de
lare (xargs :stobjs (tiny-state)))(let ((ts (with-lo
al-stobjtiny-state(mv-let (result tiny-state)(mv (
opy-from-tiny-state tiny-state) tiny-state)result))))(
opy-to-tiny-state ts tiny-state)))(defun at-exitpoint (tiny-state)(de
lare (xargs :stobjs (tiny-state)))(and (equal (prog
 tiny-state) *prog-halt-address*)(program-loaded tiny-state *fib-prog* *prog-start-address*)(tiny-statep tiny-state)(equal (dtos tiny-state) *init-dtos*)))(def
onst *max-prog-address* (1- (+ *prog-start-address*(len *fib-prog*))))(defun 
utpoint-measure (tiny-state)(de
lare (xargs :non-exe
utable t))(if (at-exitpoint tiny-state)0(o+ (o* (omega) (nfix (dtos-val tiny-state 0)))(nfix (- *max-prog-address* (prog
 tiny-state))))))The at-exitpoint fun
tion is our predi
ate for re
ognizing exit states in our program. For the�b example, this fun
tion veri�es that the tiny-state is at the halt address, that the �b program isloaded in the proper lo
ation in mamory, that tiny-state is in fa
t a tiny-state, and that there15



is only one value on the sta
k.The 
utpoint-measure fun
tion give us the measure fun
tion that will allow us to prove termi-nation. Sin
e there is one loop with a natural number 
ounter that de
reases until it rea
hes 0, ourmeasure is ! multiplied by the 
ounter (whi
h is the value at the top of the sta
k at ea
h 
utpoint)added to the value of the program 
ounter.These are the only program-spe
i�
 fun
tions ne
essary for our method. Beyond the rewriterules ne
essary for reasoning about the TINY ma
hine, the rest is virtually identi
al to the mstateexample. The one di�eren
e is that we don't need to bother with the non-exe
utable versionsof steps-to-
utpoint and next-
utpoint (see our supporting material for details). We do thisbe
ause ACL2 
an just as easily reason about the exe
utable versions of these fun
tions, sin
e ourdefstobj+ 
onstru
t proves that the 
opy-to-tiny-state and 
opy-from-tiny-state fun
tionsare logi
ally just identity fun
tions. Thus for the relatively small e�ort required to use defstobj+ andto write out the exe
utable version of steps-to-
utpoint, we get an eÆ
ient, 
lo
kless, exe
utablefun
tion for running our �b program.5 Related workThere are strong parallels between the method we have presented here to prove termination andJ Moore's work 
ombining indu
tive assertions with operational semanti
s in order to prove thepartial 
orre
tness of imperative programs [12℄. Like our method, Moore's work limits reasoning to
utpoints, as users need only spe
ify assertions for the 
utpoints of the program. A partial fun
tionthat steps the ma
hine to the next 
utpoint (if su
h a 
utpoint exists) is then used to push theseassertions through the program points between the 
utpoints. The partial fun
tion invariant fromMoore's work applied to our TINY example would take the form(defpun invariant (tiny-state)(if (at-
utpoint tiny-state 
utpoints)(assert state)(invariant (next tiny-state))))and the invariant 
orre
tness theorem would take the form(implies (invariant tiny-state)(invariant (next tiny-state)))This is where our work di�ers from Moore's. Instead of de�ning the invariant as a partialfun
tion, we de�ne the partial 
lo
k fun
tion. This serves two purposes. First, it allows us to moreeasily extend the method for proving partial 
orre
tness to apply to termination proofs. The partial
lo
k fun
tion gives us the measure ne
essary to run from 
utpoint to 
utpoint. The se
ond purposeof the partial 
lo
k fun
tion is that it more thoroughly pushes reasoning about the program up tothe 
utpoint level rather than the single step level. For example, rather than de�ning assertionson 
utpoints and extending them to invariants on all states, we simply state the invariant as aninvariant over the 
utpoints and use symboli
 simulation to prove 
orre
tness at the 
utpoint levelby a theorem of the form(implies (invariant tiny-state)(invariant (
utpoint-to-
utpoint tiny-state)))16



This helps us verify the guards of the simulation fun
tion whi
h runs from 
utpoint to 
utpointrather than state to state. However, the result is still equivalent to that of Moore's work. That is,we still get an invariant that implies partial 
orre
tness for the program.Both Moore's work and ours are dependent on the existen
e of partial fun
tions in ACL2, addedby Manolios and Moore [10℄.Our work is also 
losely related to Ray and Moore's work on the formal 
orresponden
e be-tween the indu
tive invariants method and the 
lo
k fun
tions method of proving partial and total
orre
tness results for state ma
hines [14℄.Spe
i�
ally, Ray and Moore show that given valid theorems of total (respe
tively, partial) 
or-re
tness in terms of either method, then the required de�nitions and theorems to prove total (partial)
orre
tness using the other method 
an be generated automati
ally. Thus both methods have thesame logi
al strength.Ray and Moore go on to generalize both methods so that they 
an be used 
ompositionally. Thisallows, for example, total (partial) 
orre
tness results about individually veri�ed software subroutinesto be 
ombined into a total (partial) 
orre
tness result for a 
lient program that 
alls the subroutines.Formal 
orresponden
es are also proved between the generalized methods.In Ray and Moore's approa
h, di�erent versions of the 
lo
k fun
tion are de�ned, dependingon whether partial 
orre
tness or total 
orre
tness is being proved. For partial 
orre
tness, their
lo
k fun
tion is de�ned in terms of Skolem fun
tions, using the defun-sk ma
ro. In our own work,
lo
k fun
tions are uniformly de�ned as tail-re
ursive partial fun
tions with the defpun pa
kage.However, this alone is not suÆ
ient to distinguish their 
lo
k fun
tion de�nitions from ours, sin
ethe 
ore theorems produ
ed by both defpun and defun-sk rely on the same underlying def
hoosefa
ility of ACL2.However, one 
lear di�eren
e with our form of 
lo
k fun
tion is that it has been expli
itly designedto satisfy ordinal arithmeti
 properties that are not 
onditioned on whether a 
utpoint or exitpointstate is rea
hable. This allows the same 
lo
k de�nition to be used for proving both partial andtotal 
orre
tness properties. We believe, but haven't proved, that Ray and Moore's 
orresponden
eproofs 
ould be adapted to use our form of 
lo
k fun
tion.A se
ond di�eren
e is that de�ning the 
lo
k fun
tion as a tail-re
ursive partial fun
tion gives us away to evaluate the 
lo
k fun
tion on 
on
rete ma
hine states in ACL2, and to symboli
ally simulatethem on symboli
 state expressions. Sin
e the 
lo
k fun
tion is partial it may not terminate, but ifit does terminate then it returns the 
orre
t value. In 
ontrast, there is no method for evaluatingor symboli
ally simulating fun
tions de�ned using def
hoose or defun-sk, in general. The abilityto symboli
ally simulate 
lo
k fun
tions up to the next 
utpoint or exitpoint signi�
antly in
reasesproof automation, and paves the way for building eÆ
ient 
lo
kless simulators.Termination in ACL2 was a topi
 in last year's ACL2 workshop with Manolios and Vroon's paperimplementing a new ordinal notation and ordinal arithmeti
 library whi
h are now the foundationof termination reasoning in ACL2 [11℄Most theorem provers for higher order logi
s provide some level of support for admitting well-founded (i.e. terminating) fun
tion de�nitions. Classi
al higher order logi
 is strong enough for thesefun
tions to be admitted de�nitionally in terms of a higher-order def
hoose-like fun
tion 
alled theHilbert 
hoi
e operator. Slind has developed a theory and portable library of theorem provingta
ti
s that helps automate these proofs. Given a set of pattern-mat
hing re
ursion equations overan indu
tive datatypes and a well-founded relation, the library attempts to prove that all re
ursive
alls in the pattern mat
hing equations are applied to smaller values a

ording to the well-foundedrelation. If su


essful, the library generates the pattern mat
hing equations as theorems, as well as17



a fun
tion-spe
i�
 indu
tion s
heme [15, 17℄.These te
hniques 
an be used to model imperative programs in the same way that ACL2 does, asstate-passing fun
tions. However, many imperative algorithms 
all themselves re
ursively multipletimes in su


ession. A simple example is a fun
tion that destru
tively zeroes out every leaf nodeof a binary tree. In this 
ase the returned state value of the �rst re
ursive 
all is used as the stateparameter to the se
ond re
ursive 
all. These nested re
ursive fun
tion de�nitions require morepowerful termination proof te
hniques [16℄. Krsti�
 and Matthews explore using indu
tive invariantsto ta
kle these proofs in the 
ontext of verifying imperative Binary De
ision Diagram algorithms[8, 9℄.Resear
hers have studied for de
ades appropriate ways to stru
ture partial- and total-
orre
tnessproofs for higher-level imperative programming languages. A re
ent text by de Roever et al [5℄des
ribes some of these te
hniques. It also introdu
es a general framework based on indu
tiveassertions that 
an be dire
tly adapted to 
utpoint-based reasoning.There have been several promising methods for automati
ally proving termination of imperativeprogramming languages. For example, Podelski and Rybal
henko have given a 
omplete methodfor proving termination for non-nested loops with linear ranking fun
tions [13℄. Dams, Gerth, andGrumberg have given a heuristi
 for automati
ally generating ranking fun
tions [4℄. Finally, Col�onand Sipma have developed two algorithms for proving termination. One synthesizes linear rankingfun
tions, but is limited to programs of few variables. The other is more heuristi
 in nature, buttends to 
onverge faster to the invariants whi
h it 
an dis
over [2, 1℄. However, none of these developgeneral methods for reasoning about termination. They instead fo
us on de
idable subsets of thetermination problem by using de
ision pro
edures to develop linear ranking fun
tions.6 Con
lusionsWe have presented a variation of Moore's method for proving the partial 
orre
tness of programsusing partial fun
tions and symboli
 simulation that provides an easy te
hnique for verifying thetotal 
orre
tness of imperative programs. We presented a way to use this result to de�ne eÆ
ientterminating program simulators in a perfe
t world, and des
ribed those features needed in ACL2 tomake this a pra
ti
al reality.We intend to apply these te
hniques in a 
ertifying 
ompiler we are building at Galois Connne
-tions, In
. for the Cryptol� domain-spe
i�
 exe
utable spe
i�
ation language [3℄. Cryptol allowsen
ryption algorithms to be spe
i�ed de
laratively and at a higher level of abstra
tion than 
anbe done in 
onventional imperative programming languages, while still allowing eÆ
ient 
ode to begenerated. Our 
ertifying Cryptol 
ompiler will target the instru
tion set of the AAMP7 se
ure mi-
ropro
essor, being developed at Ro
kwell Collins. In addition to obje
t 
ode, the 
ompiler will emita 
orresponden
e proof ACL2 s
ript that automati
ally veri�es that the generated 
ode faithfullyimplements the original program's Cryptol semanti
s.A
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