ACL2VHDL Translator:
A Simple Approach to Fill the Semantic Gap

Jun Sawada

IBM Austin Research Laboratory
sawada@us.ibm.com

Abstract. We wrote an ACL2 to VHDL translator for our verifica-
tion purpose. One major problem of translation between programming
languages and the ACL2 language is the semantic gap caused by the
translation; it is not easy to translate one language to another while pre-
cisely preserving its semantics. Our approach is to write a translator for
a small subset of the ACL2 language for which there is no loss of seman-
tic correctness. This seemingly restricted translator turned out to be a
promising approach for combining ACL2 and VHDL testing/verification
tools. This paper discusses the details of the translator and the bit-vector
libraries used in the translatable ACL2 functions.

1 Introduction

The ACL2 theorem prover has been used for formally verifying many pieces
of hardware and software. Typically, verification is performed on an abstract
model which is manually written in the ACL2 language. This allows interesting
analysis on various aspects of computation, including the hardware verification of
pipelined machine controls[8], floating point algorithms[6], and cache coherence
protocols. However, there is always a doubt whether a manually-written abstract
model is a correct representation of an actual implementation. It is desirable to
analyze actual programming and hardware description languages, rather than
its manual translation.

However, formally verifying actual programs or RTL description of hardware
using a theorem prover is not very popular. This is partially because real-world
software and hardware are far more complicated than what can be easily handled
by a theorem prover. But there is also a language barrier that prevents or at
least discourages researchers and engineers from analyzing, for instance, C and
VHDL using a theorem prover.

Typically, when ACL2 is used to verify software rewritten in some program-
ming language, it must be translated to or interpreted in the ACL2 language.
There are two types of approaches: deep embedding and shallow embedding. In a
deep embedding approach, one writes an interpreter of the target programming
language in ACL2, and proves theorems about the results of interpretation. In a
shallow embedding approach, one writes a translator from the programming lan-
guage to the ACL2 language, and proves properties about translated programs
in the form of ACL2 functions.

There are pros and cons in both approaches. In a deep embedding approach,
it is often easy to define an interpreter with a precise semantic correctness. Data
in the target programing language are typically represented by special data-types
in ACL2. Liu and Moore[5] use this approach to precisely model the semantics of
Java bytecode. On the downside of the deep embedding, the interpreter is slow
when executed. Proof on the interpreter is sometimes cumbersome, as one has
to reason in two steps about the interpreter that handles the target language.

The shallow embedding is opposite. Since we do not have to deal with an
interpreter acting like a middleman, it is often straightforward to deal with a
translated program. However, translation is often imprecise. One of the reasons
is that data-types in programming languages are not isomorphic to ACL2 data-
types. For example, nil in ACL2 means both Boolean false and empty list.
Another example is that ACL2 integers are big numbers without limit, while
most programming languages use 32-bit or 64-bit integers. There are also some
concepts that are difficult to translate to ACL2, such as pointers in programming
languages.

Both approaches have been used in hardware verification as well. In ACL2-
based verification projects, Hunt’s DUAL-EVAL[4] is an example of deep em-
bedding, while Russinoft’s floating-point verification uses shallow embedding][7].
When translating hardware description language into the ACL2 language, there
are additional problems deriving from the differences of computation models. For
example, the concurrent signal assignment statement in VHDL is a collection of
assignment statements which are not ordered. When evaluating, concurrent as-
signments must be repetitively applied until no more values are updated. In a
sense, it is performing a fix-point calculation. Thus, translation of concurrent as-
signments in VHDL to ACL2 is not straightforward. Even if the translation can
done, the resulting program may become too complex to analyze by a theorem
prover.

Our goal in this paper is to define a translation that allows the analysis of
VHDL code in ACL2. Our approach is rather simple but effective. First, we
define a translator from ACL2 to VHDL, not the other way around. We rely on
the VHDL-level verification tools in comparing translated ACL2 functions and
VHDL implementations of hardware. We can also use ACL2 to prove theorems
about the ACL2 functions before the translation. In this way, we never have to
work on complicated VHDL source code at the ACL2 level. When the VHDL
implementation of hardware is changed, as it happens so often, the VHDL-level
verification tools have to simply be rerun. We use ACL2 in the analysis of the
high-level concepts such as algorithms that do not change very often.

Second, the translator can handle a small subset of ACL2 language. We define
an ACL2 book about bits, bit-vectors, and 32-bit integers. Our translator accepts
ACL2 functions that use only the functions from this ACL2 book. This way, we
can translate ACL2 functions to VHDL without loss of semantic correctness.

In this paper, we first introduce the ACL2 bit-vector library used in the
translated functions, then go on to describe the details of the translation pro-

gram. This paper assumes the minimum knowledge of VHDL. For a tutorial of
VHDL, we recommend Bhasker’s book][1].

2 Bit-Vector Library

In the standard ACL2 distribution, there is a library called the THS (Integer
Hardware Specification) library. It has been developed for specifying hardware
in the verification project on a DSP processor[2]. In the THS library, bits are
represented by ACL2 integer 0 and 1. Bit-vectors are represented by integers.
This simple representation allows quick execution of the model specified in the
IHS library. Also the THS library defines many operations over bits and bit-
vectors, and provides related lemmas.

However, the THS library is not adequate as a basis of ACL2-to-VHDL trans-
lation. First, the integer representation of bits and bit-vectors prevents us from
defining a one-to-one mapping between the ACL2 and VHDL data-types. When
you say 1, it could mean integer 1, bit 1, or a bit-vector whose value happens to
be 1. And even if it is known to be a bit-vector of value 1, it could be a bit-vector
of length 1, a bit-vector of length 10, or a bit-vector of any length.

Also, this ambiguity in the length of bit-vectors disallows the definition of
certain functions. For example, let us consider a function msb that returns the
most significant bit of a bit-vector. Should we define (msb 1) to be 0 or 17 It
depends on the length of the bit-vector represented by 1.

We defined a new bit-vector library called BV library. In this library a bit is
represented as list (BIT 0) or (BIT 1). A bit-vector is represented by a list (BV
v n), where positive integer v is the value of the bit-vector, and n is its length.
In other words, the corresponding bit-vector is the least significant n bits of the
binary representations of v.

By building it on top of the THS library, we simplified the definition of the
BV library. For example, let us look at the definition of function bv&, which
returns a concatenation of two bit-vectors:

(defun bv& (a b)
(bv (logapp (bv-size b) (bv-val b) (bv-val a))
(+ (bv-size a) (bv-size b))))

Function bv is a constructor for bit-vectors; (bv val size) returns a list (BV
val size). Function bv-val and bv-size returns the value and the length of a
bit-vector, respectively. Function (logapp n bvl bv2) is an IHS function that
concatenates bit-vectors bv2 and bvl assuming that the length of bvl is n. In
this definition, bv& calculates the value of the concatenated vectors by calling
the THS function. The length of the concatenated vector is the sum of the lengths
of two vectors. In this way, we reused definitions and lemmas in the IHS library
as much as possible in the BV library.

Bit constant *b0* and *b1x* are defined to be (BIT 0) and (BIT 1), respec-
tively. Type predicate (bitp x) is true if x is a bit. We define operators over
bits such as b-not, b-ior, b-and, b-xor, and b-eqv.!

Following are basic functions on bit-vectors defined in the BV library. A
complete list is provided in Table 1 and 2 in Section 3. Function (1sb v) returns
the least significant bit of bit-vector v, and (msb v) returns the most significant
bit. Function (msbits v) returns v after removing the least significant bit, while
(1sbits v) returns v except the most significant bit. Function (b&bv b v) and
(bv&b v b) add bit b to the bit-vector v as the most significant bit and the least
significant bit, respectively. Hence:

(msb (b&bv b v)) = Db
(1sbits (b&bv b v)) = v
(1sb (bv&b v b)) = b

(msbits (bv&b v b)) = v

In a sense, msb and 1sb act like car for bit-vectors, 1sbits and msbits like cdr,
and b&bv and bvé&b like cons.

Function (bitn n v) returns the n’th bit of bit-vector v. The most significant
bit is always indexed by 0, and the index increases toward the less significant bits.
In VHDL, an IEEE standard ulogic vector defined to be std_ulogic_vector (0
to len-1) has the same indexing. Different vendors prefer different styles of
indexing, i.e. indexing from the most significant bit or indexing from the least
significant bit. Additionally, VHDL allows indexing starting from any integer.
To keep the BV library simple, we decided to allow only the indexing from the
most significant bit to the least significant bit starting from O.

Other operations defined over bit-vectors include sub range of bit-vector
(bits v i j), bit-wise negation (bv-not v), bit-wise AND (bv-and v1 v2),
bit-wise OR (bv-ior v1 v2), logical shift to left (bv-<< v a), logical shift
to right (bv->> v a), arithmetic-shift to right (bv-*>> v a), binary addi-
tion (bv+ v1 v2), binary increment (bv++ v1), equality operation (bv-eq? v1
v2), and binary comparisons such as greater-than relation (bv-gt? v1 v2). We
also defined a 0-length bit-vector *bv-nil#* and a conversion function from bit
to bit-vector of length 1, (b2bv b).

There are also a few functions for control. Function (bv-if b v1 v2) returns
bit-vector v1 if b is 1, and returns v2 otherwise. We also define a macro bv-cond
which works like the cond control structure in ACL2.

Using the functions described above, any functions over bit and bit-vectors
can be defined. We found that the BV library can easily express most of the
functions defined in hardware, such as when we described multipliers and floating
point instructions.

! The THS library has bit operators with the same name. However, we define our
bit-vector library in a separate ACL2 package, thus they are different functions.

3 Conversion of ACL2 to VHDL

We wrote a translation program from the ACL2 language to VHDL. We call
it ACL2VHDL translator. This translation program only handles bit and bit-
vectors and 32-bit integers. Bits are mapped to VHDL standard ulogic, bit-
vectors are mapped to standard ulogic vectors, and 32-bit integers are mapped
to VHDL integers. Translatable ACL2 functions are those defined only in terms
of let, let* and the functions in the BV library. Any other functions are not
allowed in the translated function, including basic ACL2 functions if and cons.
This limitation simplifies the implementation of the translation program and
also helps to preserve the semantics during the function translation.

Some of the bit-vector functions in the BV library such as (bv& v0 v1) and
(bv-and v0 wvl) have corresponding VHDL operators, namely (v0 & v1) and
(v0 AND v1). We defined additional VHDL functions so that every bit and bit-
vector functions from the BV library has a corresponding VHDL function. Such
additional functions are defined in a VHDL file named acl2_support.vhdl. Some
of them are msb(v), 1sb(v), 1lsbits(v), msbits(v), bitn(n,v), bits(v,i,j),
and bv_gt (v0,v1). The names of the BV functions and the corresponding VHDL
functions are shown in Table 1 and 2. Due to the restriction of the characters
that can be used in VHDL function names, the function names in the BV library
and acl2_support.vhdl may not be identical, but their semantics should be.

Integers are also problems in translation. In ACL2, integers are big numbers
without limit, but VHDL’s integer is often implemented as 32-bit integers. In
order to fill the gap, we define the 32-bit integer type (int32p i), and 32-bit
integer operations such as (int32+ i j), (int32- i j) and (int32*% i j). We
allow only 32-bit integer and the associated operations in the translatable ACL2
functions, but not ordinary ACL2 arithmetic operations such as +, - and *.

The ACL2VHDL translator converts functions using 32-bit integers. For ex-
ample

(defun plus (a b)
(declare (xargs :guard (and (int32p a) (int32p b))))
(int32+ a b))

is translated into

function plus(a : integer;b : integer)
return integer is
variable result : integer;

begin
result := (a + b);
return result;

end plus;

Since every BV function has a corresponding VHDL function, we can directly
translate an ACL2 function whose definition only includes BV functions. How-
ever, in addition to the BV functions, we allow let and let* statements, which

Table 1. BV library functions that can be used in the translated functions and the
corresponding VHDL functions. VHDL functions are defined in the standard IEEE
1164 library or defined in a new VHDL package for the conversion purpose. This
table shows bit logical operations, bit-vector logical operations, and bit manipulation
functions. Function bv-cond has no corresponding function, and it is translated to an
expression using ite

ACL2 Function|VHDL Function|Descriptions
b0 ’0° Bit one (constant).
*b1x ’1° Bit zero(constant).
b-not not Bit negation.
b-ior or Bit OR.
b-nor nor Bit NOR.
b-and and Bit AND.
b-nand nand Bit NAND.
b-xor xor Bit exclusive OR.
b-andc1 andcl Bit AND with the first argument complemented.
b-andc2 andc2 Bit AND with the second argument complemented.
b-orcl orcl Bit OR with the first argument complemented.
b-orc2 orc2 Bit OR with the first argument complemented.
b-maj maj Majority function.
b-if ite IF-statement returning a bit.
bv-nil e Bit-vector of length zero(constant).
bv-not not Bit-wise negation.
bv-and and Bit-wise AND.
bv-ior or Bit-wise OR.
bv-xor xor Bit-wise XOR.
bv-neg bv_neg 2’s complement.
bv-if ite IF-statement returning a bit-vector.
bv-cond Cond-statement returning a bit-vector.
b2bv b2bv Conversion from bit to bit-vector of length 1.
bitn bitn N’th bit from the most significant bit.
msb msb The most significant bit.
1sb 1sb The least significant bit.
msbits msbits Removing the least significant bit.
lsbits lsbits Removing the most significant bit.
bv&b & Concatenating a bit after a bit-vector.
b&bv & Concatenating a bit before a bit-vector.
bv& & Concatenating two bit-vectors.
bits bits Subrange of a bit-vector.
bv-right bv_right The rightmost n bits of a bit-vector.
bv-left bv_left The leftmost n bits of a bit-vector.
zeros pado A bit-vector with every bit set to 0.
ones padi A bit-vector with every bit set to 1.
pado pado Identical to zeros.
padi padi Identical to ones.
£ill-0 £ill 0 Bit zeros filling a subrange.
£ill-1 fill 1 Bit ones filling a subrange.

Table 2. A continued list of BV library functions and the corresponding VHDL func-
tions. Here we define shifting operations, arithmetic operations, arithmetic relations,
and logical operations over bits in a vector.

ACL2 Function

VHDL Function

Descriptions

bv-uextend
bv-sextend

bv_uexnted
bv_sexnted

Unsigned extension of a bit-vector.
Signed extension of a bit-vector.

bv-1sh sll Shift left logical with an integer shift amount.
bv-ash sla Shift left arithmetic with an integer shift amount.
BV-<< bv_sll Shift left with a bit-vector shift amount.
BV->> bv_srl Shift right logical with a bit-vector shift amount.
BV-*>> bv_sra Shift right arithmetic with a bit-vector shift amount.
bv+ + Binary addition.
bv+carry bv_carry Carry out from a binary addition.
bv- - Binary subtraction.
bv* * Binary multiplication.
bv++ increment |Binary increment.
bv-- decrement |Binary decrement.
bv-inc add_bit Binary increment if a bit input is set.
bv-eq? bv_eq bit-vector equality.
bv-neq? bv_neq bit-vector inequality
bv-gt? bv_gt Binary greater than.
bv-ge? bv_ge Binary greater than or equal to.
bv-1t? bv_1t Binary less than.
bv-1le? bv_le Binary less than or equal to.
bv-all-ones? and reduce |AND’ing all bits in a bit-vector.
bv-all-zeros? | nor_reduce |NOR’ing all bits in a bit-vector.
bv-some-zeros?| nand reduce [NAND’ing all bits in a bit-vector.
bv-some-ones? or_reduce |OR’ing all bits in a bit-vector.
bv-and-all and_reduce |Identical to bv-all-ones?.
bv-ior-all or_reduce |Identical to bv-all-zeros?.
bv-right-ior | bv_right_or |OR’ing the rightmost n bits of a bit-vector.
bv-left-ior bv_left_or |OR’ing the leftmost n bits of a bit-vector.
bv-1z leadz Number of zero bits in a bit-vector.

requires a special treatment. Basically, variable bindings in a let expression are
translated into VHDL sequential assignments.

When the ACL2VHDL translator first parses an ACL2 function definition,
it extracts a list of bindings introduced by let. In order to translate the ACL2
let semantics correctly, this extraction algorithm renames a variable every time
it is rebound by a let expression. For example, let us look at the translation of
function foo:

(defun foo (a)
(declare (xargs :guard (and (bvp a) (equal (bv-size a) 1))))
(let ((x (b&bv *blx* a)))
(let ((x (b&bv *b0* x)))
(let ((x (b&bv *bl* x)))
(msb x)))))

The ACL2VHDL translator converts it into a VHDL function:

function foo(a : std_ulogic_vector)
return std_ulogic is
variable x : std_ulogic_vector(0 to 1);
variable x_1 : std_ulogic_vector(0 to 2);
variable x_2 : std_ulogic_vector(0 to 3);
variable result : std_ulogic;
begin
x := (bl & a);
x_1 := (b0 & x);
x_2 := (bl & x_1);
result := msb(x_2);
return result;
end foo;

In this translation,? bit *bO* and *bl#* are translated to VHDL constant b0
and bl. ACL2 function b&bv and msb are translated into corresponding VHDL
functions & and msb, respectively. The scope analysis introduced new variables
x-1 and x_2 to the VHDL code to store the value of x bound in the second and
third let expressions. (Note we convert each ACL2 function to an individual
VHDL function, and we do not have to worry about name collisions with existing
VHDL variables or signals.) The scope analysis was performed to follow the
LISP scope rules, thus we allow let expressions inside the binding of another
let expression. For example,

(defun bar (a)
(declare (xargs :guard (and (bvp a) (equal (bv-size a) 1))))
(let ((x (let ((x (b&bv *b0* a))) (b&bv *bl* x))))
(bv& x x)))

2 For readability of the paper, the output from the ACL2VHDL translator is indented
properly, although the raw output is not pretty-printed.

is translated into:

function bar(a : std_ulogic_vector)
return std_ulogic_vector is
variable x_4 : std_ulogic_vector(0 to 1);
variable x : std_ulogic_vector(0 to 2);
variable result : std_ulogic_vector(0 to 5);
begin
x_4 := (b0 & a);
x := (bl & x_4);

result := (x & x);
return result;
end bar;

In this translation, x_4 is used to store the value of x in the inside 1let expression,
while x represents the x of the outside let.

The ACL2VHDL translator also performs type inference on the ACL2 func-
tions. Note in the examples above, function foo and bar return a bit and a
bit-vector of length 6, respectively. In VHDL, such type information of results
and intermediate values are needed to define variables. The ACL2VHDL transla-
tor infers such required type information from the type of the input arguments.
The user must provide a guard expression to each function in order to annotate
the type of all the input arguments.

The translated ACL2 function can take only bits, bit-vectors, and 32-bit
integers as arguments, and the types of all input variables must be determined
from the guard expression. The guard expression must be a conjunction of form
(and condy conds ... cond,). For a bit type argument b, (bitp b) should
appear as a conjunct. 32-bit integer type argument i should have a conjunct
(int32p i) in the guard expression. bit-vector argument v of length n has to
have conjunct expressions (bvp v) and (equal (bv-size v) n) in the guard
expression. The length of n can be either a verbatim positive number or an
expression of type int32p, which might use 32-bit integer type arguments. For
example,

(defun testl (x m n)
(declare (xargs :guard (and (int32p m)
(int32p n)
(bvp x)
(equal (bv-size x) (int32+ n m)))))
(b&bv *blx x))

is translated into:

function testl(x : std_ulogic_vector;m : integer;n : integer)
return std_ulogic_vector is
variable result : std_ulogic_vector(0 to (((n + m) + 1) - 1));
begin
result := (bl & x);

return result;
end testl;

The ACL2VHDL translator ignores any conjuncts in the guard expression that
are none of the forms discussed above.

One exception to the restriction of input argument types are big integers as a
first argument of bv. This is because we sometimes need to specify a constant bit-
vector which is longer than 32 bits. The ACL2VHDL translator directly converts
such a bv expression into a bit-vector constant in VHDL.

Type inference algorithm knows the type of basic functions defined in the
BV library. It also stores the type of a newly defined function. From the type
information of functions and arguments, the type inference algorithm deduces
result types. Since most functions in the BV library can take bit-vectors of vari-
able lengths, our type inference system is implemented to handle parametrized
types. For example, the type of function b&bv is represented by a list ((bit (bv
a)) (bv (+ a 1))), which means b&bv takes a bit and a bit-vector of length a
as arguments and returns a bit-vector of length a+1.

After variable renaming for let expressions and type inference, the process
is rather simple to generate the VHDL functions. The ACL2VHDL translator
converts the body expression of an ACL2 function into a sequence of assign-
ments. For each let binding, it creates a separate variable assignment in VHDL.
The translator does not generate VHDL control constructs such as IF-THEN-
ELSE statements. Even ACL2 function bv-if is translated into the correspond-
ing VHDL if-then-else function ite. For example

(defun test3 (a x y)
(declare (xargs :guard (and (bitp a)
(bvp x) (equal (bv-size x) 32)
(bvp y) (equal (bv-size y) 32))))
(bv-if a (bv& x y) (bv& y x)))

is translated into

function test3(a : std_ulogic;
X : std_ulogic_vector;
y : std_ulogic_vector)
return std_ulogic_vector is
variable result : std_ulogic_vector(0 to 63);
begin
result := ite(a, (x & y), (y & x));
return result;
end test3;

Since the ACL2VHDL translator does not accept if, translated ACL2 func-
tions cannot be recursive. Generally speaking, not all recursive functions can be
translated into VHDL. Recursion is allowed for VHDL functions only if the com-
piler can statically unroll a recursive function to a flat definition. In other words,

10

functions can recurse only on statically known values, such as the length of bit-
vectors or constant integers. It is possible to translate such a limited recursive
function. However, the recursive VHDL function must use VHDL IF-THEN-
ELSE statements, and thus requires a significant modification of our translator
which currently outputs only sequential assignment statements in the function
body.

4 Discussion

We implemented a small translator from the ACL2 language to VHDL using the
BV library. Because the translated language is limited, we can translate ACL2
functions to VHDL functions while minimizing the semantic gap between two
completely different languages.

Although we can use only the BV library functions in the definition of
translated functions, we found our BV library expressively enough to describe
many algorithms used in hardware. We specified multipliers and the behavior of
floating-point instructions using this library. We found that the BV library sup-
plies frequently used functions for such work. The ACL2VHDL translator also
allows a kind of parametrized function by permitting variable length bit-vectors
as arguments. This enables us to convert generalized functions. For example, we
can specify a single function that rounds a floating-point mantissa to a bit vector
of any length, such as single-precision and double-precision lengths.

It is true that the ACL2VHDL translator is limited with various features, and
the most notable missing feature is recursion. Although recursive functions are
not frequently used in hardware descriptions, it is useful in describing algorithms.

However, recursive functions are disallowed only in the function to be trans-
lated. We can freely define a recursive function in ACL2 using the BV library
function. We can also “translate” such a recursive function to a VHDL function
by taking a two-step approach. First, we define a non-recursive version of ACL2
function and prove the equivalence between the two ACL2 functions. Then, we
translate the non-recursive function into VHDL.

Although the BV library only defines the bit and bit-vectors, it does not
provide any mechanisms to define data-structures like records and lists. We did
not include them in the translation because we wanted to keep our translator
simple, and also because there are no corresponding data-structures in VHDL.
One exception is an array. Arrays are used to define memory and register files,
and it is desirable to implement it in the future version of the ACL2VHDL
translator.

Also our translator does not handle features used to describe hardware in
VHDL,; such as the concept of entity and ports, signal delays, and state holding
elements such as latches. These features are excluded from our translator to
keep it simple. Our approach is remarkably different from some projects that
tries to model many details of VHDL, such as the work by Georgelin et. al.
[3]. Their translator converts VHDL concepts of entity and process into the
ACL2, assuming synchronous behavior and transformation on the concurrent

11

assignments. We do not handle any of those, instead, we rely on VHDL-level
verification tools to handle them.

One might ask, then, whether such a simple translator is actually useful
in hardware verification. Our experience shows that it is, especially when the
translator is combined with VHDL-level verification tools. In one approach, one
can compare the translated ACL2 function and actual VHDL implementation by
simulation or formal verification tools. For example, we wrote the specification
of floating-point conversion instructions, translated it into VHDL, and compared
it against the actual VHDL implementation of a floating-point unit using a SAT
solver. For simple instructions like a floating point conversion instruction, we
can completely verify that a VHDL implementation of floating point unit is
equivalent to the ACL2 specification.

Yet another application is translating properties written as ACL2 functions
into VHDL, and check them using a VHDL-level formal verification tool. Once
those properties are verified at the VHDL level, we can use verified properties
as lemmas and construct a verification proof of a large system. For example, we
may use such an approach for compositional verification of a multiplier.

Either way, the ACL2VHDL translator is useful when it is combined with
VHDL-level verification/testing tools. For future work, we would like to inte-
grate the ACL2 system and VHDL-level verification tools using the ACL2VHDL
translator.

References

1. J. Bhasker. A VHDL Primer. Prentice Hall, 1992.

2. B. Brock and W. A. Hunt, Jr. Formally specifying and mechanically verifying
programs for the Motorola complex arithmetic processor DSP. In 1997 IEEE In-
ternational Conference on Computer Design, pages 31-36. IEEE Computer Society,
Oct. 1997.

3. P. Georgelin, D. Borrione, and P. Ostier. A framework for vhdl combining theorem
proving and symbolic simulation. In ACL2 Workshop, 2002.

4. W. A. Hunt, Jr. and B. Brock. A formal HDL and its use in the FM9001 verification.
In C. A. R. Hoare and M. J. C. Gordon, editors, Mechanized Reasoning and Hard-
ware Design, Prentice-Hall International Series in Computer Science, pages 35—48.
Prentice-Hall, Englewood Cliffs, N.J., 1992.

5. H. Liu and J. S. Moore. Java program verification via a jvm deep embedding in
acl2. In To appear in TPHOLs2004, personal communication, 2004.

6. J. S. Moore, T. Lynch, and M. Kaufmann. A Mechanically Checked Proof of the
AMD5k86 Floating-Point Division Program. IEEE Trans. Comp., 47(9):913-926,
September 1998.

7. D. Russinoff. A Mechanically Checked Proof of IEEE Compliance of a Register-
Transfer-Level Specification of the AMD-K7 Floating-Point Multiplication, Divi-
sion, and Square Root Instructions. London Mathematical Society Journal of Com-
putation and Mathematics, 1:148—-200, December 1998.

8. J. Sawada and W. A. Hunt, Jr. Processor verification with precise exceptions and
speculative execution. In A. J. Hu and M. Y. Vardi, editors, Computer Aided
Verification (CAV ’98), volume 1427 of LNCS, pages 135-146. Springer Verlag,
1998.

12

