ACL2VHDL Translator:
A Simple Approach to Fill the Semantic Gap

Jun Sawada

IBM Austin Research Laboratory
11501 Burnet Road, MS 904-6H012
Austin, TX 78758

E-mail: sawada®@austin.ibm.com



Overview of the Talk

Language Translation for Hardware Verification
Our Approach

Bit Vector Library

Translation of ACL2 to VHDL

Application

Discussion



Two Approaches in Hardware Verification by ACL2

e Proof about abstract models written in the ACL2 language.
— Pro: Direct. Easy.
— Cons: |s the model a correct representation of actual HW?
e Proof on hardware written in an HDL, such as Verilog and VHDL.
— Pro: We get results on actual HW, essential for industry.
— Cons: Tedious proof about the low-level details of HW.
— Cons: May require to change the proof when HW changes.
— Cons: Need a translation from HDL to ACL2. This is not easy.



Two Approaches for Language Translation

e Deep Embedding (e.g DUAL-EVAL)
— Define an ACL2 interpreter of an HDL.
— Analyze the evaluation process by the interpreter.

— Proof can be tedious and confusing because of two-step reasoning.

e Shallow Embedding
— Use a language translator from an HDL to the ACL2 language.
— Analyze the result of translation.

— Translate is more likely to be incorrect: semantic gap.



Typical Problems in Language Translation

e Data types that are not isomorphic.

— E.g. In ACL2, NIL is both false and an empty list, unlike ML.
— When translating ACL2 to ML, how to translate NIL?

e Some languages are not well-defined.

— E.g. C arrays of size bigger than 2%2.



Why difficult to translate VHDL?

e Many language features make it difficult to write a complete translator be-
tween VHDL and ACL2.

— Entity and Architecture.

— Delayed actions.

— Generics.

— Sequential and Concurrent Assignment.

— e.g. Incrementer with input x and output inc in concurrent assignment.

carry(32) <= ’17;
carry(0 to 31) <= x and carry(l to 32);
inc(0 to 31) <= din xor carry(1l to 32);



How it has been done?

e Typically people write translators from HDL to ACL2 (with some restriction.)
— Georgelin, Borrione, Ostier 2002
— Russinoff 1998

e |t is laborious to write a complete translator.



Our Approach

e A New Approach
— Define a translator from ACL2 functions to VHDL functions.
— Translatable ACL2 functions are defined in terms of a bit vector library.
— VHDL-level verification tools use the result of translation.
— Translator does not handle anything like delays, ports, and clocks.
e Why?

— We only translate a subset of ACL2 language which can be mapped directly
to VHDL without loss of semantics.

— Use ACL2 only for the analysis of algorithms and specifications of HW.
— Proof on algorithms does not need to change, even if hardware changes.

— VHDL verification tools are responsible for handling delays, clocks, any-
thing that are related to the actual implementation of hardware.



Overview of the Talk

Language Translation for Hardware Verification
Our Approach

Bit Vector Library

Translation of ACL2 to VHDL

Application

Discussion



IHS : ACL2's Bit Vector Library

e IHS (Integer Hardware Specification) Library by Bishop Brock.
— A bit is represented by a 0 and 1.
— A bit vector is represented by an integer.
— Speedy simulations with many supporting lemmas.
— Not adequate for the language translation between ACL2 and HDL.
— 0 and 1 represent both bit and bit vectors.
— An integer can represent bit vector of many different length.
— e.g. No way to tell a 32-bit bit vector from a 64-bit bit vector.
— Hard to define some functions

— e.g. a function returning the most significant bit of a bit vector.



A new bit vector library: BV Library

A bit is defined as (bit 0) or (bit 1).
A bit vector is defined as (BV val size).
— val is the integer value of the bit vector and size is the length.
Many basic operations are defined as functions.
BV library is built on top of IHS.

— e.g. Bit concatenation function bv& is defined in terms of logapp from

the IHS library.

(defun bv& (a b)
(declare (xargs :guard (and (bvp a) (bvp b))))
(bv (logapp (bv-size b) (bv-val b) (bv-val a))
(+ (bv-size a) (bv-size b))))

10



Some Basic Functions in the BV library.

(b-not Db) : Bit negate.

(bv-not bv) : Bit vector negate.

(msb bv) : Returns the most significant bit of bv.

(bits bv i j) : Sub range of a bit vector from i'th bit to j'th.
(bv& bv0 bvl) : Concatenation.

(bv+ bv0O bv1l) : Addition.

(bv-<< bv sh) : Shift to left.

(bv-gt? bv0 bvl) : Greater-than relation.

(bv-if b0 bvO0 bvil) : if-then-else.

11



BV Library Summary

e Quite powerful library to specify functions on bit and bit vectors.
e A floating-point instructions of a PowerPC™ media unit has been specified.

e Many lemmas from the IHS library are or can be imported to the BV library.

— However, need more work to expand it.

12



ACL2VHDL Translator

e Translates ACL2 function defined in terms of the functions from the BV
library, 1et and letx*.

— No if-statement. Use bv-if or b-if.
— No recursive functions.
e Conversion Process:
— Parsing.
— Type Inference.

— VHDL code generation.

13



Conversion Tricks
We need to implement a type inference system, because ACL2 language is
dynamically typed, but VHDL is statically typed.

Code generation is simple mapping as all BV library functions are re-defined
in VHDL.

Name conflicts in the let expressions are resolved by renaming.

Addition of 32-bit integer types in ACL2, since VHDL integers are 32-bit
integers.

14



Carry Generation in ACL2

(defun 1c8 (v8)

(declare (xargs :guard (and (bvp v8)

(b&& (bv-and-all
(bv-and-all
(bv-and-all
(bv-and-all
(bv-and-all
(bv-and-all
(bitn 7 v8)
*b1x%) )

(bits
(bits
(bits
(bits
(bits
(bits

v8
v8
v8
v8
v8
v8

15

o Ok WD -

(equal (bv-size v8) 8))))
7))
7))
7))
7))
7))
7))



Translated Carry Function

function 1c8(v8 : std_ulogic_vector)
return std_ulogic_vector 1s
variable result : std_ulogic_vector(0 to 7);
begin
result := (and_reduce(bits(v8,1,7)) &
(and_reduce(bits(v8,2,7)) &
(and_reduce(bits(v8,3,7)) &
(and_reduce(bits(v8,4,7)) &
(and_reduce(bits(v8,5,7)) &
(and_reduce(bits(v8,6,7)) &
(bitn(7,v8) &
b2bv(b1))))))));
return result;
end 1c8;

16



Carry look ahead signal in ACL2

(defun gc8 (v32)
(declare (xargs :guard (and (bvp v32)
(equal (bv-size v32) 32))))
(b&& (bv-and-all (bits v32 8 31))
(bv-and-all (bits v32 16 31))
(bv-and-all (bits v32 24 31))))

17



Carry look ahead signal in VHDL

function gc8(v32 : std_ulogic_vector)
return std_ulogic_vector 1s
variable result : std_ulogic_vector(0 to 2);
begin
result := (and_reduce(bits(v32,8,31)) &
(and_reduce(bits(v32,16,31)) &
b2bv (and_reduce(bits(v32,24,31)))));
return result;
end gc8;

18



Carry and Increment

(defun carry32 (v32)
(declare (xargs :guard (and (bvp v32)
(equal (bv-size v32) 32))))
(let ((1c_0_7 (1c8 (bits v32 0 7)))
(1c_8_15 (1c8 (bits v32 8 15)))
(1c_16_23 (1c8 (bits v32 16 23)))
(1c_24_31 (1c8 (bits v32 24 31)))
(gc (gc8 v32)))
(bv&& (bv-if (bitn 0 gc) 1c_0_7 (bv 0 8))
(bv-if (bitn 1 gc) 1c_8_15 (bv 0 8))
(bv-if (bitn 2 gc) 1c_16_23 (bv 0 8))
1c_24_31)))

(defun inc2 (v32)
(declare (xargs :guard (and (bvp v32)
(equal (bv-size v32) 32))))
(bv-xor v32 (carry32 v32)))

19



Carry and Increment in VHDL

function carry32(v32 : std_ulogic_vector)
return std_ulogic_vector 1s
variable 1c_0_7 : std_ulogic_vector(0 to 7);
variable 1c_8_15 : std_ulogic_vector(0 to 7);
variable 1c_16_23 : std_ulogic_vector(0 to 7);
variable 1c_24_31 : std_ulogic_vector(0 to 7);
variable gc : std_ulogic_vector(0 to 2);
variable result : std_ulogic_vector(0 to 31);
begin
1c_0_7 := 1c8(bits(v32,0,7));
1c_8_15 := 1c8(bits(v32,8,15));
1c_16_23 := 1c8(bits(v32,16,23));
1c_24_31 := 1c8(bits(v32,24,31));
gc := gc8(v32);

20



Carry and Increment in VHDL : Continued

result := (ite(bitn(0,gc),1c_0_7,bv(X"0",8)) &
(ite(bitn(l,gc),1c_8_15,bv(X"0",8)) &
(ite(bitn(2,gc),1c_16_23,bv(X"0",8)) &
1c_24_31)));
return result;
end carry32;

function inc2(v32 : std_ulogic_vector)

return std_ulogic_vector 1s

variable result : std_ulogic_vector(0 to 31);
begin

result := (v32 xor carry32(v32));

return result;

end inc?2;

21



A Simple Incrementer

e In ACL2

(defun inc (v0)
(declare (xargs :guard (and (bvp vO)
(equal (bv-size v0) 32))))
(bv+ vO (bv 1 32)))

e In VHDL translation:

function inc(vO : std_ulogic_vector)

return std_ulogic_vector 1s

variable result : std_ulogic_vector(0 to 31);
begin

result := (vO + bv(X"1",32));

return result;
end inc;

22



Application

e Floating-Point instruction verification.

e Multiplier Verification

23



Verification of Floating-Point Instruction

e We wrote a specification of floating-point instructions for a media unit.
e ACL2VHDL was used to the spec to VHDL.

e Run a SAT procedure to verify precision conversion instructions implemented
in hardware.

ACL 2 spec of
Instructions

ACL2VHDL

Y

E VHDL ref. model HW VHDL

\/

@ Test Driver

yes/no

24



Multiplier Verification
e Sandip Ray worked on the integration of ACL2 and SixthSense, an IBM in-
ternal tool for VHDL verification.

e Working on a multiplier built in terms of Booth encoder and Carry Save
Adders.

e We proved the correctness of multiplier algorithm in ACL2, provided that the
hardware satisfies a number of proof obligations.

e The proof obligations are translated, checked by SixthSense and then imported
back into ACL2 as a theorem.

e This is an on-going work.

25



Multiplier Verification Flow

ACL2 world
{ ACL2 Property } { ACL2 Theorem J
ACL2VHDL
Trans ate:j property ) ’ﬁi@
In VHDL J I

Test Driver

VHDL world

26



Discussion

e Bare-bone translator against full-fledged translators.
— ACL2VHDL is a simple translator, but flexible for wide applications.
— No knowledge about time, unit, port, etc.
e Recursive functions are useful or not?
— VHDL has a limited form of recursive functions.
— if-statement needs to be added to the conversion.
— Currently, recursive functions can be used in verification with extra steps.
— First verify theorems using recursive functions.
— Define and prove there is an non-recursive function equivalent to it.

— Use the non-recursive version functions for HW verification.

27



