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Two Approaches in Hardware Verification by ACL2

e Proof about abstract models written in the ACL2 language.
— Pro: Direct. Easy.
— Cons: |s the model a correct representation of actual HW?
e Proof on hardware written in an HDL, such as Verilog and VHDL.
— Pro: We get results on actual HW, essential for industry.
— Cons: Tedious proof about the low-level details of HW.
— Cons: May require to change the proof when HW changes.
— Cons: Need a translation from HDL to ACL2. This is not easy.



Two Approaches for Language Translation

e Deep Embedding (e.g DUAL-EVAL)
— Define an ACL2 interpreter of an HDL.
— Analyze the evaluation process by the interpreter.

— Proof can be tedious and confusing because of two-step reasoning.

e Shallow Embedding
— Use a language translator from an HDL to the ACL2 language.
— Analyze the result of translation.

— Translate is more likely to be incorrect: semantic gap.



Typical Problems in Language Translation

e Data types that are not isomorphic.

— E.g. In ACL2, NIL is both false and an empty list, unlike ML.
— When translating ACL2 to ML, how to translate NIL?

e Some languages are not well-defined.

— E.g. C arrays of size bigger than 2%2.



Why difficult to translate VHDL?

e Many language features make it difficult to write a complete translator be-
tween VHDL and ACL2.

— Entity and Architecture.

— Delayed actions.

— Generics.

— Sequential and Concurrent Assignment.

— e.g. Incrementer with input x and output inc in concurrent assignment.

carry(32) <= ’17;
carry(0 to 31) <= x and carry(l to 32);
inc(0 to 31) <= din xor carry(1l to 32);



How it has been done?

e Typically people write translators from HDL to ACL2 (with some restriction.)
— Georgelin, Borrione, Ostier 2002
— Russinoff 1998

e |t is laborious to write a complete translator.



Our Approach

e A New Approach
— Define a translator from ACL2 functions to VHDL functions.
— Translatable ACL2 functions are defined in terms of a bit vector library.
— VHDL-level verification tools use the result of translation.
— Translator does not handle anything like delays, ports, and clocks.
e Why?

— We only translate a subset of ACL2 language which can be mapped directly
to VHDL without loss of semantics.

— Use ACL2 only for the analysis of algorithms and specifications of HW.
— Proof on algorithms does not need to change, even if hardware changes.

— VHDL verification tools are responsible for handling delays, clocks, any-
thing that are related to the actual implementation of hardware.
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IHS : ACL2's Bit Vector Library

e IHS (Integer Hardware Specification) Library by Bishop Brock.
— A bit is represented by a 0 and 1.
— A bit vector is represented by an integer.
— Speedy simulations with many supporting lemmas.
— Not adequate for the language translation between ACL2 and HDL.
— 0 and 1 represent both bit and bit vectors.
— An integer can represent bit vector of many different length.
— e.g. No way to tell a 32-bit bit vector from a 64-bit bit vector.
— Hard to define some functions

— e.g. a function returning the most significant bit of a bit vector.



A new bit vector library: BV Library

A bit is defined as (bit 0) or (bit 1).
A bit vector is defined as (BV val size).
— val is the integer value of the bit vector and size is the length.
Many basic operations are defined as functions.
BV library is built on top of IHS.

— e.g. Bit concatenation function bv& is defined in terms of logapp from

the IHS library.

(defun bv& (a b)
(declare (xargs :guard (and (bvp a) (bvp b))))
(bv (logapp (bv-size b) (bv-val b) (bv-val a))
(+ (bv-size a) (bv-size b))))
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Some Basic Functions in the BV library.

(b-not Db) : Bit negate.

(bv-not bv) : Bit vector negate.

(msb bv) : Returns the most significant bit of bv.

(bits bv i j) : Sub range of a bit vector from i'th bit to j'th.
(bv& bv0 bvl) : Concatenation.

(bv+ bv0O bv1l) : Addition.

(bv-<< bv sh) : Shift to left.

(bv-gt? bv0 bvl) : Greater-than relation.

(bv-if b0 bvO0 bvil) : if-then-else.
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BV Library Summary

e Quite powerful library to specify functions on bit and bit vectors.
e A floating-point instructions of a PowerPC™ media unit has been specified.

e Many lemmas from the IHS library are or can be imported to the BV library.

— However, need more work to expand it.
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ACL2VHDL Translator

e Translates ACL2 function defined in terms of the functions from the BV
library, 1et and letx*.

— No if-statement. Use bv-if or b-if.
— No recursive functions.
e Conversion Process:
— Parsing.
— Type Inference.

— VHDL code generation.
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Conversion Tricks
We need to implement a type inference system, because ACL2 language is
dynamically typed, but VHDL is statically typed.

Code generation is simple mapping as all BV library functions are re-defined
in VHDL.

Name conflicts in the let expressions are resolved by renaming.

Addition of 32-bit integer types in ACL2, since VHDL integers are 32-bit
integers.
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Carry Generation in ACL2

(defun 1c8 (v8)

(declare (xargs :guard (and (bvp v8)

(b&& (bv-and-all
(bv-and-all
(bv-and-all
(bv-and-all
(bv-and-all
(bv-and-all
(bitn 7 v8)
*b1x%) )

(bits
(bits
(bits
(bits
(bits
(bits

v8
v8
v8
v8
v8
v8
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Translated Carry Function

function 1c8(v8 : std_ulogic_vector)
return std_ulogic_vector 1s
variable result : std_ulogic_vector(0 to 7);
begin
result := (and_reduce(bits(v8,1,7)) &
(and_reduce(bits(v8,2,7)) &
(and_reduce(bits(v8,3,7)) &
(and_reduce(bits(v8,4,7)) &
(and_reduce(bits(v8,5,7)) &
(and_reduce(bits(v8,6,7)) &
(bitn(7,v8) &
b2bv(b1))))))));
return result;
end 1c8;
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Carry look ahead signal in ACL2

(defun gc8 (v32)
(declare (xargs :guard (and (bvp v32)
(equal (bv-size v32) 32))))
(b&& (bv-and-all (bits v32 8 31))
(bv-and-all (bits v32 16 31))
(bv-and-all (bits v32 24 31))))
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Carry look ahead signal in VHDL

function gc8(v32 : std_ulogic_vector)
return std_ulogic_vector 1s
variable result : std_ulogic_vector(0 to 2);
begin
result := (and_reduce(bits(v32,8,31)) &
(and_reduce(bits(v32,16,31)) &
b2bv (and_reduce(bits(v32,24,31)))));
return result;
end gc8;

18



Carry and Increment

(defun carry32 (v32)
(declare (xargs :guard (and (bvp v32)
(equal (bv-size v32) 32))))
(let ((1c_0_7 (1c8 (bits v32 0 7)))
(1c_8_15 (1c8 (bits v32 8 15)))
(1c_16_23 (1c8 (bits v32 16 23)))
(1c_24_31 (1c8 (bits v32 24 31)))
(gc (gc8 v32)))
(bv&& (bv-if (bitn 0 gc) 1c_0_7 (bv 0 8))
(bv-if (bitn 1 gc) 1c_8_15 (bv 0 8))
(bv-if (bitn 2 gc) 1c_16_23 (bv 0 8))
1c_24_31)))

(defun inc2 (v32)
(declare (xargs :guard (and (bvp v32)
(equal (bv-size v32) 32))))
(bv-xor v32 (carry32 v32)))
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Carry and Increment in VHDL

function carry32(v32 : std_ulogic_vector)
return std_ulogic_vector 1s
variable 1c_0_7 : std_ulogic_vector(0 to 7);
variable 1c_8_15 : std_ulogic_vector(0 to 7);
variable 1c_16_23 : std_ulogic_vector(0 to 7);
variable 1c_24_31 : std_ulogic_vector(0 to 7);
variable gc : std_ulogic_vector(0 to 2);
variable result : std_ulogic_vector(0 to 31);
begin
1c_0_7 := 1c8(bits(v32,0,7));
1c_8_15 := 1c8(bits(v32,8,15));
1c_16_23 := 1c8(bits(v32,16,23));
1c_24_31 := 1c8(bits(v32,24,31));
gc := gc8(v32);
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Carry and Increment in VHDL : Continued

result := (ite(bitn(0,gc),1c_0_7,bv(X"0",8)) &
(ite(bitn(l,gc),1c_8_15,bv(X"0",8)) &
(ite(bitn(2,gc),1c_16_23,bv(X"0",8)) &
1c_24_31)));
return result;
end carry32;

function inc2(v32 : std_ulogic_vector)

return std_ulogic_vector 1s

variable result : std_ulogic_vector(0 to 31);
begin

result := (v32 xor carry32(v32));

return result;

end inc?2;
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A Simple Incrementer

e In ACL2

(defun inc (v0)
(declare (xargs :guard (and (bvp vO)
(equal (bv-size v0) 32))))
(bv+ vO (bv 1 32)))

e In VHDL translation:

function inc(vO : std_ulogic_vector)

return std_ulogic_vector 1s

variable result : std_ulogic_vector(0 to 31);
begin

result := (vO + bv(X"1",32));

return result;
end inc;
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Application

e Floating-Point instruction verification.

e Multiplier Verification
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Verification of Floating-Point Instruction

e We wrote a specification of floating-point instructions for a media unit.
e ACL2VHDL was used to the spec to VHDL.

e Run a SAT procedure to verify precision conversion instructions implemented
in hardware.

ACL 2 spec of
Instructions

ACL2VHDL

Y

E VHDL ref. model HW VHDL

\/

@ Test Driver

yes/no
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Multiplier Verification
e Sandip Ray worked on the integration of ACL2 and SixthSense, an IBM in-
ternal tool for VHDL verification.

e Working on a multiplier built in terms of Booth encoder and Carry Save
Adders.

e We proved the correctness of multiplier algorithm in ACL2, provided that the
hardware satisfies a number of proof obligations.

e The proof obligations are translated, checked by SixthSense and then imported
back into ACL2 as a theorem.

e This is an on-going work.

25



Multiplier Verification Flow

ACL2 world
{ ACL2 Property } { ACL2 Theorem J
ACL2VHDL
Trans ate:j property ) ’ﬁi@
In VHDL J I

Test Driver

VHDL world
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Discussion

e Bare-bone translator against full-fledged translators.
— ACL2VHDL is a simple translator, but flexible for wide applications.
— No knowledge about time, unit, port, etc.
e Recursive functions are useful or not?
— VHDL has a limited form of recursive functions.
— if-statement needs to be added to the conversion.
— Currently, recursive functions can be used in verification with extra steps.
— First verify theorems using recursive functions.
— Define and prove there is an non-recursive function equivalent to it.

— Use the non-recursive version functions for HW verification.
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