
An ACL2 Library for Bags
(Multisets)

Eric Smith*, Serita Nelesen*, David Greve,
Matthew Wilding, and Raymond Richards

Rockwell Collins Advanced Technology Center
Cedar Rapids, IA 52498 US

*Eric and Serita are students at Stanford University
and the University of Texas at Austin, respectively.

Background

• The AAMP7 microcode has instructions
that access memory.

• Rockwell Collins has a library, GACC, for
reasoning about programs which use those
instructions.

• GACC uses bags to represent collections of
addresses.

Outline

• Why bags?
• Functions and predicates about bags
• Basic bag rules - can be too expensive!
• :Meta rules to the rescue!

• We often need to show that two memory
operations don't interfere (i.e., that they affect
different addresses).

• Two main ways to show that addresses a and b
differ:
(1) a and b belong to collections which are
disjoint from each other.
(2) a and b are separately included in a
collection that contains no duplicates.

Why bags?

Why bags? (continued)

• We need to reason about collections of addresses.
• We must keep track of duplicates.
• The order of elements in our collections isn’t

meaningful.
• Multisets are collections in which elements can

appear multiple times but in which the order of
elements doesn’t matter. Perfect!

• Multisets are also called “bags.”

Implementation of Bags

• We currently implement bags as lists.
• Ex: `(4 1 1 5 1)
• Ex: nil

• We may change this representation
later.

Operations On Bags

• (bag-insert a x) : Insert element a into bag x.
• (remove-1 a x) : Remove one occurrence of

element a from bag x.
• (remove-all a x) : Remove all occurrences of

element a from bag x.
• (bag-sum x y) : Combine the bags x and y.
• (bag-difference x y) : Remove the elements in

bag y from bag x.

Predicates on Bags

• (memberp a x) : Does a appear in bag x?
• (subbagp x y) : Does each element appear in bag

y at least as many times as it appears in bag x?
• (disjoint x y) : Do the bags x and y have no

elements in common?
• (unique x) : Does no element appear in x more

than once?
• (bagp x) : Is x is a bag?
• (empty-bagp x) : Is x is an empty bag?

More Operations on Bags

• (count a x) : Return the multiplicity of a in x.

• (perm x y) : Equivalence relation to test
whether x and y represent the same bag (i.e.,
whether they agree on the count for each
element). Allows congruence reasoning.

Rules About Bags

The bags library has two kinds of rules:
1. Basic rules for simplifying terms in the

usual ACL2 style.
2. Fancy rules (mostly :meta rules) for cases

in which the basic rules are too expensive.

Some Basic Bag Rules
(defthm unique-of-append

(equal (unique (append x y))
(and (unique x)

(unique y)
(disjoint x y))))

(defthm disjoint-of-append-one
(equal (disjoint (append x y) z)

(and (disjoint x z)
(disjoint y z))))

(defthm disjoint-of-append-two
(equal (disjoint x (append y z))

(and (disjoint x y)
(disjoint x z))))

Basic Rules Can Be Expensive!
(unique (append a b c d e f)) �

This is a quadratic blowup!
(We get one disjoint claim
for each pair of arguments
to append.)

But sometimes we append
dozens of things! Yikes!

(and (unique a)
(unique b)
(unique c)
(unique d)
(unique e)
(unique f)
(disjoint e f)
(disjoint d e)
(disjoint d f)
(disjoint c d)
(disjoint c e)
(disjoint c f)
(disjoint b c)
(disjoint b d)
(disjoint b e)
(disjoint b f)
(disjoint a b)
(disjoint a c)
(disjoint a d)
(disjoint a e)
(disjoint a f))

:Meta Rules to the Rescue !
• We disable potentially expensive basic rules

and use :meta rules for the cases we care
about.

• We care most about establishing certain
predicates (disjoint, unique, etc.).

• Our :meta rules search through the known
facts (i.e., the type-alist) to try to find a line
of reasoning showing that the predicate of
interest is true.

Example: Subbag Chain

• Intuition: To show (subbagp x y), we use known
facts to construct a “subbag chain” from x to y.

• We might know (subbagp x z1), (subbagp z1 z2),
and (subbagp z2 y).

• We can conclude (subbagp x y).
• Think: x ⊆ z1 ⊆ z2 ⊆ y.

yz2z1x

“Syntactic” Subbags

• Sometimes we can tell just by looking at two
terms that one is a subbag of the other.

• Ex: x is always subbag of (append x z).

• If we discover (subbagp (append x z) y), we
can conclude (subbagp x y).

• Think: x ⊆ (append x z) ⊆ y.

The Rule for Subbagp

Ways to show (subbagp x y):
1. Notice that (syntax-subbagp x y).
or:
2. Discover (subbagp blah1 blah2), where:

(syntax-subbagp x blah1), and then
show: (subbagp blah2 y).

Think: x ⊆ blah1 ⊆ blah2 ⊆ y

Concrete Example

(defthm example

(implies (and (subbagp x z)
(subbagp (append z v) w)

(subbagp w y))

(subbagp x y)))

Think: x ⊆ z ⊆ (append z v) ⊆ w ⊆ y

The Rule for Disjointness, part 1

To show (disjoint x y):
Discover (disjoint blah1 blah2), and then show

(subbagp x blah1) and (subbagp y blah2).
or vice versa:
Discover (disjoint blah1 blah2), and then show

(subbagp y blah1) and (subbagp x blah2).

xblah1: yblah2:

The Rule for Disjointness, part 2

Or, to show (disjoint x y):
Discover (unique blah), and then show
(subbagp (append x y) blah).

blah: yx(append x y):

Other Predicates We Handle

• (unique x)
• (memberp a x)
• (not (memberp a x))
• (not (equal a b))
• (subbagp (append x y) bag) and similar

predicates

Implementation

• Our :meta reasoning is of the “extended” sort.
That is, we make use of the metafunction context
(or mfc).

• We call mfc-type-alist to get the collection of
currently known facts.

• But ACL2 has no axioms about mfc-type-alist!
• So our :meta rules must generate hypotheses.
• Before applying the rules, ACL2 must relieve the

hypotheses.

Problem with ACL2

• The problem: Variables which are mentioned in
the generated hypotheses -- but not in the rule’s
left-hand-side -- are treated as free. So ACL2
searches for free-variable matches. This isn’t
what we want at all!

• Ex: Show (subbagp x y) using (subbagp x z)
and (subbagp z y).

• The terms mentioning z came from the type-alist.
• So don’t try to match z with something else!

Change to ACL2

• Generated hypotheses can now contain, in
essence, calls of bind-free.

• Now our code can bind the variables.
• Now we can write solid :meta rules that use

the metafunction context.

:Meta Rules in Action
Our rules prove these theorems in about 0.01 seconds each:

(defthmd disjoint-test4
(implies (and (subbagp x x0)

(subbagp y y0)
(subbagp (append x0 y0) z)
(subbagp z z0)
(subbagp z0 z1)
(unique z1))

(disjoint x y)))

(defthmd non-memberp-test1
(implies (and (subbagp p q)

(subbagp q (append r s))
(subbagp (append r s) v)
(memberp a j)
(subbagp j (append k l))
(subbagp (append k l) m)
(disjoint m v)
)

(not (memberp a p))))

Future work

• Make the interface more abstract (e.g., use
bag-sum instead of append).

• Add more bag functions to the library (e.g., bag-
intersection).

• Consider sorting the elements of our bags.
• Investigate the few instances where we still have

to enable the basic rules.
• Could we use something like a decision procedure

for bags? (Keep a pot of bag facts analogous to
the pot of linear arithmetic facts?)

Conclusion
• We’ve implemented a library about bags. It has

been used at Rockwell, and we hope others will
use it too.

• The library uses fancy :meta rules when the basic
rules would cause quadratic blowups.

• The :meta rules are fairly nice. (To show foo,
discover a term of the form bar, and then show
baz.)

• The :meta rules access the mfc. Our work led to a
change in ACL2 which will help others who want
to use facts from the mfc.

