
An ACL2 Library for Bags (Multisets)

Eric Smith∗, Serita Nelesen†,

David Greve, Matthew Wilding, and Raymond Richards

ewsmith@stanford.edu,

serita@cs.utexas.edu,

dagreve@rockwellcollins.com,

mmwildin@rockwellcollins.com,

rjricha1@rockwellcollins.com

Rockwell Collins Advanced Technology Center

Cedar Rapids, IA 52498 USA

November 19, 2004

Abstract

In support of our ongoing ACL2 work, Rockwell Collins has developed a library of definitions and lemmas
for bags (or multisets). This paper describes that library. Our early work with bags had the limited purpose
of supporting a proof about the AAMP7 microprocessor but contained many nice features, including fancy
bind-free and :meta rules for use when more basic rules would be expensive. We have collected the bag
definitions and rules into a library and have added many new rules to make the library more widely useful.
Work on the library continues.

1 Motivation and History

The bags library arose from Rockwell Collins’ proof of a separation property for the AAMP7 microprocessor [2].
In particular, bags support GACC, the “generalized accessor” library [1]. In the AAMP7 work, the elements of
our bags were typically addresses in the processor’s address space. Often, after collecting the bag of addresses
occupied by a structure in memory, we needed to claim that it contained no duplicates or that it was disjoint from
some other bag. Such independence claims were needed to establish non-interference between different operations,
and we believe that reasoning of this sort is inherent in the analysis of real-world systems that manipulate memory.

The bags library contains two main types of rules: basic rules to rewrite bag claims in the typical ACL2
fashion, and efficient :meta and bind-free rules to handle common situations in which the basic rules cause
quadratic blowups. The :meta and bind-free rules were developed before many of the basic rules.1

Having a separate library for bags has several advantages. First, we can reuse the bag reasoning in future
projects at Rockwell Collins. Second, we can distribute the library to the ACL2 community. (We expect that
the bags library will be distributed with the books from the 2004 ACL2 Workshop.) Third, with all of the bag
rules collected in one place, we can more easily make experimental changes to the library to try out different
approaches.

∗Eric Smith is currently a Ph.D. student at Stanford University.
†Serita Nelesen is currently a Ph.D. student at the University of Texas at Austin.
1Serita Nelesen proved many :meta and bind-free rules in the summer of 2003, from a specification provided by David Greve. In

the summer of 2004, Eric Smith extracted all of the bag rules into a separate library called bags, added a few :meta rules, replaced

some bind-free rules with :meta rules, and added definitions and rules to flesh out the basic theory of bags.

1



The rest of this paper has the following structure: Section 2 introduces bags and argues that they are the most
appropriate way to represent collections of AAMP7 addresses. Section 3 outlines the basic theory of bags, and
Section 4 discusses the basic bag rewrite rules. Section 5 shows that the basic rules are insufficient for reasoning
about real-world systems, and Section 6 discusses the fancy rules that we use in place of some of the basic rules.
Section 7 discusses a change made to ACL2 after our work uncovered a subtle issue. Section 8 shows that our
library easily proves some non-trivial bag theorems, and Section 9 discusses future work.

2 Introduction to Bags

Bags are collections in which the multiplicity of elements is significant but their order is not. One might think
of bags as variants of sets which can meaningfully contain duplicates. Thus, bags are sometimes called multisets.
One might also think of bags as variants of lists in which the order of elements is irrelevant.

Our AAMP7 work often required us to reason about the collections of addresses occupied by structures in
memory. We believe that those collections are best represented as bags, not as sets or as simple lists.

A common claim made in the AAMP7 proofs is that the addresses occupied by a structure are all unique.
To express this claim, we collect the structure’s addresses into a bag and then use the predicate unique to claim
that the bag contains no duplicates. This tells us that different parts of the structure do not overlap with each
other, a fact that seems crucial if we are going to reason about destructive updates to it. We need to know that
updating one part of the structure doesn’t change other parts! Note that using a set instead of a bag in this way
would not work. If we collected the structure’s addresses into a set, knowing that that set was unique would
tell us nothing. Since sets cannot contain duplicates, their uniqueness is trivially true. Since we use a bag, any
overlap of the structure with itself would result in some address appearing more than once in the bag.

On the other hand, we don’t want to use lists for our collections of addresses, because lists respect the order
of their elements. Two lists are equal only if their elements appear in the same order, but most of the operations
on our collections of addresses are not concerned with the order of elements. Reordering a collection has no
effect when we test for membership of an element in the collection, when we test whether the collection contains
another, when we test whether the collection contains no duplicates, or when we test whether the collection is
disjoint with another collection.

Furthermore, some of the AAMP7 proofs require a way to express the equivalence of collections which differ in
the order of their elements. For example, imagine that we first extract the addresses occupied by the pointer fields
of a data structure and then extract the addresses occupied by the value fields. Combining the two resulting
collections should yield a collection that is equivalent to the collection of all the addresses occupied by the
structure. But the equivalence used in this case cannot be the standard equal test for lists, since extracting the
pointer and value addresses separately and then combining them will put the addresses in an order different from
that obtained by extracting all of the addresses at once. Our library has a notion of equivalence, called perm,
which exactly captures what we want to express in this case. Using perm to test for equivalence indicates that
you are probably not dealing with simple lists.

Bags, which model multiplicity but not order, fall between lists, which model both, and sets, which model
neither. For the reasons discussed above, we believe bags are the best choice for representing the collections of
addresses in our work.

3 The Theory of Bags

Here are the main functions that deal with bags:

Functions that return bags:

(bag-insert a x) ;insert element A into bag X [currently we use cons]

(bag-sum x y) ;combine the bags X and Y [currently we use append]

(remove-1 a x) ;remove the first occurrence of element A from bag X

(remove-all a x) ;remove all occurrences of A from bag X

(bag-difference x y) ;remove the elements in bag Y from bag X [currently we have remove-bag]

2



Predicates on bags:

(bagp x) ; test whether X is a bag [currently returns t]

(empty-bagp x) ;test whether X is an empty bag [currently we use (not (consp x))]

(memberp a x) ;test whether A appears in bag X (returns a boolean, unlike member)

(subbagp x y) ;test whether, for any element A, A appears in bag Y

;at least as many times as it appears in bag X

(disjoint x y) ;test whether X and Y have no elements in common

(unique x) ;test whether no element appears in X more than once

Other functions:

(count a x) ;return the multiplicity of A in X

Equivalence relation on bags:

(perm x y) ;test whether two bags are permutations of each other

;(i.e., whether they agree on the count for each element)

We currently implement bags as simple lists. Because we do not sort our bags, lists that are permutations of
each other represent the same bag. For example, the bag containing 1 and 2 can be represented by ’(1 2) or
’(2 1). (But perhaps we should sort our bags; see “Future Work” below.)

4 Basic Rules

The bags library contains many rules characterizing the basic theory of bags. Those rules are too numerous and
varied to list here, so we refer the reader to the books in the library itself for the details.

Many of the basic bag rules are fairly straightforward and conform to typical ACL2 usage. We attempt
to normalize bag terms, and we simplify applications of predicates to bag terms. Worth noting are the many
:congruence rules for the equivalence relation perm. For example,

(defcong perm equal (memberp a x) 2)

says that permuting the second argument to a memberp call has no effect on what the memberp call returns.
Among our basic rules are some which we keep enabled, such as

(defthm remove-1-of-cons-same

(equal (remove-1 a (cons a x))

x))

However, some basic rules can be expensive, as we describe in the next section.

5 Why the Basic Rules Are Insufficient

In real-world reasoning, the basic bag rules can be too expensive. Consider the following basic rules:

(defthm unique-of-append

(equal (unique (append x y))

(and (unique x)

(unique y)

(disjoint x y))))

(defthm disjoint-of-append-one

(equal (disjoint (append x y) z)

(and (disjoint x z)

(disjoint y z))))

3



(defthm disjoint-of-append-two

(equal (disjoint x (append y z))

(and (disjoint x y)

(disjoint x z))))

At first glance, these seem like perfectly reasonable rules, and they probably are reasonable for some applica-
tions. However, our proofs often deal with large terms. It is not unusual to see the function unique applied to a
nest of appends which is dozens of levels deep. Consider what the rules above do to the terms they rewrite. For
example, rewriting (unique (append a b c d e f)) yields the following conjunction:

(and (unique a)

(unique b)

(unique c)

(unique d)

(unique e)

(unique f)

(disjoint e f)

(disjoint d e)

(disjoint d f)

(disjoint c d)

(disjoint c e)

(disjoint c f)

(disjoint b c)

(disjoint b d)

(disjoint b e)

(disjoint b f)

(disjoint a b)

(disjoint a c)

(disjoint a d)

(disjoint a e)

(disjoint a f))

Note that this conjunction contains a disjointness claim for every pair of arguments to append. In general,
rewriting (unique (append a1 a2 ... an )) will result in a conjunction of n unique claims and “n choose 2”
= (n2

− n)/2 disjoint claims. It turns out that the number of mentions of the ai in the result is exactly i2,
since each of the (n2

− n)/2 disjoint claims mentions two of the ai and each of the n unique claims mentions
one of the ai. Rewriting a “unique of append” term causes a quadratic blowup in the number of mentions of the
subterms. We believe that this quadratic blowup makes the basic bag rules too expensive to apply to the large
terms in our most demanding proofs; instead we use :meta and bind-free rules to do much of our bag reasoning.

6 Our Fancy Rules

We have seen that rewriting a “unique of append” term results in a quadratic blowup. So instead of rewriting
such a term, we leave it un-rewritten. We get away with this because, roughly speaking, our fancy bind-free

and :meta rules can look into such un-rewritten terms and access the information therein.
The rest of this section focuses on our newest and most advanced rules, which are :meta rules used to

establish various bag predicates. (These rules replace some of our earlier bind-free rules.) Most of these :meta

rules are of the extended sort. That is, they use the metafunction context, or mfc. (See the documentation
topic EXTENDED-METAFUNCTIONS.) In particular, our rules use mfc-type-alist to access all of the facts that are
currently known when we rewrite a term. Roughly speaking, these facts include the hypotheses of the current
goal and the negation of its conclusion, as well as other facts, such as those which arise from forward chaining.
(But of course care is taken to avoid the circularity of using facts which arose from the current literal itself.)

Most typically, our bag reasoning involves the need to establish a predicate on bags (e.g., subbagp or
disjoint). Often the facts needed to do so are explicitly present in the goal but are left un-rewritten (since
rewriting them might be expensive, as just discussed). Such a situation is usually handled by a :meta rule. The

4



:meta rule searches through the type-alist (i.e., the known facts) for some line of reasoning which establishes that
the predicate being rewritten is true. If it finds such a line of reasoning, it rewrites the predicate to t. Otherwise,
it makes no change.

Our simplest :meta rule can establish a subbagp claim by finding a “subbag chain” and appealing to the
transitivity of the subbag relation. For example, it can establish (subbagp x y) by finding a sequence of bags
that begins with x and ends with y and that has the property that each bag in the chain is a subbag of the bag
that follows it. So if the type-alist contains (subbagp x z1), (subbagp z1 z2), and (subbagp z2 y), the rule
can conclude (subbagp x y). It uses the chain from x to z1 to z2 to y. (The bag x is a subbag of z1, which is a
subbag of z2, which is a subbag of y. So x must be a subbag of y.)

Sometimes we can tell just by looking at two terms that one is a subbag of the other, and the :meta rule
for subbagp uses such “syntactic” facts. For example, x must always be a subbag of (append x z) – regardless
of the values of x and z – because (append x z) “syntactically” contains x. In this case, we say that x is a
“syntactic subbag” of (append x z), and we get one link of the chain “for free” (i.e., without having to discover
any facts on the type-alist.) So if our :meta rule discovers (subbagp (append x z) y) on the type-alist, it can
immediately conclude (subbagp x y). The subbag chain has two links: (subbagp x (append x z)), which we
get syntactically, and (subbagp (append x z) y) which we get from the type-alist.

Our subbagp :meta rule can prove the following theorem:

(defthm example

(implies (and (subbagp x z)

(subbagp (append z v) w)

(subbagp w y))

(subbagp x y)))

by constructing a subbag chain from x to z to (append z v) to w to y. (Here the link between z and (append z

v) is of the syntactic sort, and the other three links come from the type-alist.)
To do most of its work, our subbagp :meta rule calls a “show function” called show-subbagp-from-type-alist.

That function searches the type-alist for a fact which justifies the first step in a potentially useful line of reasoning,
and it then calls itself recursively to do the rest of the work. For example, if it finds (subbagp x z) then it needs
only to show (subbagp z y) in order to conclude (subbagp x y). So it calls itself recursively on (subbagp z y).
If this recursive call succeeds, the function returns successfully. Otherwise, it continues searching the type-alist
for potentially helpful facts.

We have :meta rules to establish predicates other than subbagp. Each rule has a “show function” which
takes the first step in a line of reasoning and then just calls other “show functions” (perhaps including itself,
recursively) to do the rest of the work. For example, show-disjoint-from-type-alist can establish (disjoint

x y) in several ways:

1. It can discover (disjoint blah1 blah2) on the type-alist and then call show-subbagp-from-type-alist
to show both (subbagp x blah1) and (subbagp y blah2). The intuition here is that if blah1 and blah2

have no overlap, but blah1 contains x and blah2 contains y, then x and y cannot overlap.

2. It can follow the same reasoning as in 1. but with x contained in blah2 and y contained in blah1.

3. It can discover (unique blah) and then show (subbagp (append x y) blah) by calling another “show
function,” show-unique-subbagps-from-type-alist, which is tuned to establish just that sort of “append
is a subbagp” fact. The intuition here is that x and y cannot not overlap because, if they did, (append x

y) would contain duplicates, and so would its superbag blah, which we know contains no duplicates.

Note that show-disjoint-from-type-alist merely finds the first step in a line of reasoning and then calls other
“show functions” to do the rest of the work. Such a design is typical of our most advanced :meta rules.

One of the ways that our :meta rule for disjointness can work is by finding an appropriate call to unique

on the type-alist. For example, it can establish (disjoint x y) from (unique (append x z w y v)). This
works even though the “unique of append” term is not simplified. Recall that simplifying such terms can cause
quadratic blowups, so we leave them unsimplified. In such situations, we need the :meta rule in order to establish
the predicate we care about (in this case, disjoint).

Our library contains a fancy bag rule to establish each predicate we care about, even in the presence of
unsimplified terms. Since the library supports GACC, the generalized accessor library, our fancy rules are currently

5



aimed at establishing the four predicates of most interest to GACC: disjoint, subbagp, memberp (or the negation
of memberp), and unique. (We also have limited support for using bag facts to show that two elements of bags
must be unequal.)

Unfortunately, the reasoning employed by our fancy rules is weak in the sense that it is only “syntactic.”
That is, it relies only on information explicitly present on the type-alist. For example, imagine that the type-alist
contains some non-bag facts which together imply (unique x) but that (unique x) is not derivable solely from
the bag facts on the type-alist. In this case, our fancy rules will not be able to use the (unique x) fact when
they search for proofs. (Perhaps :forward-chaining rules could help in cases like this, but they would require
the user to spend time proving them, and they might cause slower proofs. Or perhaps our fancy rules could call
mfc-rw to check whether key facts missing from their lines of reasoning might turn out to be provable using deeper
(non-bag) reasoning. But this seems potentially very expensive.) In any case, our rules seem strong enough to
handle most of the cases that arise in the AAMP7 proof.

We believe that our fancy bag rules represent a good trade-off between performance and power. In fact, we
think that our rules do pretty well, considering that they operate in a context where, for performance reasons,
we refrain from rewriting certain terms.

7 A Change to ACL2

One complication of using extended metafunctions is that they are not allowed to trust the information contained
in the mfc; no axioms are provided about the values returned by functions like mfc-type-alist. Thus each :meta

rule generates a hypothesis which includes all the facts involved in the line of reasoning it has discovered. That
hypothesis must be relieved before the :meta rule can fire. Each of our “show functions” thus has a corresponding
“hyp-for” function, which, after the “show function” succeeds, goes back and collects all the facts used in the
successful line of reasoning. (For more information, see the code in eric-meta.lisp in the bags library and see
the documentation topic EXTENDED-METAFUNCTIONS.)

Our use of generated hypotheses in our metafunctions revealed what we believe to be a subtle weakness in
versions of ACL2 up through 2.9. (The issue has been addressed in version 2.9.1.) With the old behavior, variables
which appear in a :meta rule’s generated hypothesis – but not in the rule’s left-hand-side – are treated as free.
So ACL2 searches for matches for those variables when relieving the hypothesis. This isn’t what we want at all!
For example, our subbagp rule can show (subbagp x y) by finding (subbagp x z) and (subbagp z y) on the
type-alist. The generated hypothesis in this case is essentially the conjunction of (subbagp x z) and (subbagp

z y). But the variable z does not appear in the rule’s left-hand-side: (subbagp x y). So when relieving the
generated hypothesis, ACL2 treats z as a free variable. This isn’t what we want at all! The facts we discovered
on the type-alist are about z itself, so we don’t want ACL2 to try to find other bindings for z.

We found an example where this behavior prevented a :meta rule from firing. (Roughly speaking, ACL2 always
splits the generated hypothesis into conjuncts. In our example, ACL2 found a free variable match which satisfied
one of the conjuncts but which failed to satisfy a later conjunct. Since :meta rules behave as if :match-free
:once has been declared, one spurious match was enough to cause the whole rule to fail.)

The problem described above has been addressed in ACL2 2.9.1. The crucial change is that generated hy-
potheses can now contain what are essentially calls to bind-free (actually, calls to synp, which is what the
bind-free macro expands to). Such calls were previously illegal in generated hypotheses for :meta rules. Our
generated hypotheses include such calls to instruct ACL2 to bind all “free variables” to themselves. Thus, we can
prevent ACL2 from searching for other bindings of those variables.

This change to ACL2 (along with some other related changes) allows us to write solid extended :meta rules.
We hope that these improvements will help others who also want to write :meta rules which use facts from the
mfc.

8 Some Difficult Examples

As a demonstration of the power of our bags library, we exhibit the following lemmas:

(defthmd disjoint-test4

(implies (and (subbagp x x0)

6



(subbagp y y0)

(subbagp (append x0 y0) z)

(subbagp z z0)

(subbagp z0 z1)

(unique z1))

(disjoint x y)))

(defthmd non-memberp-test1

(implies (and (subbagp p q)

(subbagp q (append r s))

(subbagp (append r s) v)

(memberp a j)

(subbagp j (append k l))

(subbagp (append k l) m)

(disjoint m v)

)

(not (memberp a p))))

Our bags library can prove each of these lemmas in about 0.01 seconds on a fast machine. This kind of speed is
important because many of our proofs are large.

9 Future Work

The bags library is a work in progress. It implicitly includes many design decisions, and we are not sure that we
have made the best choice in each case. For example, some design decisions may have been made for historical
reasons which are no longer relevant. But we can say this: The bags library is sufficient to support the AAMP7
separation proof. Each change made to the library is tested by replaying that proof after the change. If a proposed
change requires more than minor tweaking of the proofs (e.g., the addition of many hints) or significantly slows
down the proofs, we consider refraining from making the change.

The following list contains ideas for future versions of the bags library:

• We would like to continue to flesh out the library by adding more rules and ensuring that all relevant
functions are present. Some typical bag functions, especially bag-union and bag-intersection, were not
necessary for the AAMP7 work. We should add those functions and prove rules about them. (Note: We do
handle bag-sum, currently implemented by append. This paper distinguishes bag-sum, in which the count
of an element in the result is the sum of its counts in the arguments, from bag-union, in which the count
of an element in the result is the maximum of its counts in the arguments.)

• We would like to make the interface to the bags world more abstract. For instance, instead of using
cons and append to build and combine bags, we would prefer to use our own functions bag-insert and
bag-sum. This will allow us to change the implementation of such functions easily in the future. Since
bag insertion was previously done with cons, we will have to search for cons and replace some calls of it
with bag-insert. Human intervention will be required to determine whether each call to cons is doing
bag insertion or performing some other non-bag operation. Once we have transitioned to use bag-insert

instead of cons, future changes to bag-insert (e.g., if we decide to sort our bags, as discussed below) will
require much less human intervention.

• We could normalize our bags by sorting their elements. This would allow us to test for bag equality using
equal instead of perm, since each bag would have a unique representation. Bag equality is central to the
theory of bags, and, for a variety of reasons, we think it might be better to use plain old equal for bag
equality instead of using perm and its associated :congruence rules. However, we would have to handle
non-bags intelligently. What if the user types ’(2 1) and uses that value as a bag? Perhaps we could
address this issue by providing a function that converts lists into bags.

7



• Currently, any ACL2 object satisfies bagp. However, we might consider requiring bags to be true-lists.
Currently, bag functions can return non-true-lists; for example, (remove-1 ’a 3) yields 3. We believe
that this behavior has advantages for syntactic reasoning (in particular, it is convenient for the writer of
metafunctions), but we would like to investigate the matter further. (Would making a more restrictive bagp
introduce hypotheses into our rules? If so, would they be hard to relieve? Could we drop those hypotheses
by recasting our rules in terms of a bag-fix function?)

• Sometimes the proofs that employ the bags library enable the bag functions. Ideally, the user of our
library would never have to look inside these functions. Perhaps we could prove more rules about the bags
functions to spare the user from having to expose their internal details. Also, sometimes our proofs enable
the potentially expensive basic bag rules. We would like to investigate such situations to determine whether
we could handle them with additional bind-free or :meta rules or whether the proofs in question are
inherently too deep for our syntactic rules to handle.

• We would like to provide better documentation for the library, especially documentation about the fancy
rules.

• Finally, we wonder whether we could use an efficient decision procedure (or something like a decision
procedure) to answer some or all bag questions. Is some useful theory involving bags efficiently decidable?
Might we somehow integrate a decision procedure for bags (or for a subset of the theory of bags) into ACL2?
Would doing so buy us anything, such as faster proofs? Could our work benefit from the creation of a “bag
pot” (analogous to ACL2’s linear pot) to store all currently known bag facts?

10 Works Cited

References

[1] Greve, D. Address Enumeration and Reasoning Over Linear Address Spaces. In ACL2 Workshop 2004

(November 2004).

[2] Greve, D., Richards, R., and Wilding, M. A Proof-Free Summary of Intrinsic Partitioning Verification.
In ACL2 Workshop 2004 (November 2004).

8


