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Abstract

Our study was motivated by a cooperative project aiming at the design and verification of a circuit
for secure communications between a computer and a terminal smart card reader. A SHA-1 component
is included in the circuit. SHA-1 is a cryptographic primive that produces - for any message, a 160 bits
signature, called message digest. We automatically produce the ACL2 model for the VHDL RTL design,
and apply a stepwise approach to prove theorems about each computation step, using intermediate digest
functions. These functions are proven compliant with the functional specification of SHA-1.

1 Introduction

The SHA-1 is a standardized hash function [1], which processes a message up to 264 bits, and
produces a 160 bit message digest, with the following property: any alteration to the initial input
message will result, with a very high probability, in a different message digest. The applications of
this algorithm include fast encryption, password storage and verification, computer virus detection,
etc. The study of SHA-1 is motivated by a project developed in cooperation with several industrial
partners, aiming at the design and verification of a circuit for secure communications between a
computer and a terminal smart card reader. Security considerations were at the heart of the project,
it was thus of utmost importance to guarantee the correctness of the system components dedicated
to security. For the SHA-1 component, formal methods were applied both for the validation of the
functional specification[2], and for the verification of the implementation which is the subject of
this paper.

The SHA-1 is an iterative algorithm, involving a large number of repetitions over an arbi-
trary number of 512-bit blocks. Property verification by model checking was first attempted [3],
and provided some correctness statements about the internal design synchronization. But more
powerful methods had to be applied to establish that, whatever the length of the input message,
the digest is computed according to the standardized algorithm. It was thus decided to apply
mechanized theorem proving technology. More precisely, we chose the ACL2 logic, for its high
degree of automation, and reusable libraries of function definitions and theorem proofs [4]. The
input model, being written in a subset of Common Lisp, is both executable and provable. Before
investing human time in a proof, it is thus possible to check the model on test vectors, a common
simulation activity in design verification which helps debug the formal model and gain designer’s
confidence in it. The article is organized as follows. Section 2 describes the SHA-1 algorithm and
summarizes the specification model. Section 3 describes the VHDL design and its corresponding

*This is an adaptation for the ACL2 audience of the case study presented in the paper Combining several
paradigms for circuit validation and verfication, to appear in CASSIS’04 proceedings.
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Figure 1: SHA-1 global algorithm

ACL2 model, and section 4 is an overview of the SHA-1 implementation verification vs specification
model. Finally, section 5 presents our conclusions.

2 SHA-1 Algorithm

The principle of the SHA-1 is shown on Figure 1. The input message M, a bit sequence of arbitrary
length L < 264, undergoes two preprocessing steps:

e Padding: M is concatenated by bit 1, followed by k bits 0, followed by the 64-bit binary
representation of number L. k is the least non-negative solution to the equation: (L+1+k)
mod 512 = 448. As a result, the padded message holds on a multiple of 512 bits.

e Parsing: The padded message is read in blocks of 512 bits. After reading each block, it must
be decided if it is the last one.

The computation of the message digest is an 80-iteration algorithm over each message block, in
order; a block is viewed as a sequence of 32 bit words, which are selected and combined with the
contents of five 32-bit internal registers (A, B, C, D, E), using XOR and shift operations. At
the start of the computation, the internal registers are initialized with predefined constants ﬁo
=(Hy, Hy,Hs, H3, Hy). At the end of each block processing, they contain the digest obtained so
far. This digest is used as an initial value for processing the next block, if there is one.

According to the SHA-1 standard [1], the digest phase operates on the 16 words W; (0 < i < 15)
of a padded block in order to generate 80 words. The SHA-1 algorithm is formalized in ACL2 and
the detailed model can be found in [2]. Because of hardware efficiency constraints, the VHDL design
implements an alternative digest algorithm presented in the standard, which stores only sixteen
W words and not eighty. We summarize below the principle of the alternative algorithm and its
ACL2 formalization, knowing that we have already proven that the two methods are equivalent.

W; (0 < j < 79) and the five main variables A, B, C, D, E, are computed in the same loop, and
each Wj starting from j=16 is written in place of W; mod 16. The first sixteen words are made
of the padded block itself. The 64 remaining words and A, B, C, D, E are generated as follows,
where ROT L™ indicates a n-bit circular left shift operation:
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Figure 2: One computation step

for j=0 to 79 do

s=jAMASK;

if j>16 then

W,=ROTL" (Wss13amasx XOR Wigigiamask
XOR Wisioyamrasx XOR Wy);

endif;

TEMP=ROTL’(A) + F; (B, C, D) + E + W, + K;

E=D; D=C; C=ROTL*(B); B=A; A=TEMP;
endfor.

where MASK = “00000000000000000000000000001111”, F; are functions and K; constants
defined in the SHA-1 standard. Figure 2 displays the computation for j=16.

Here is the corresponding ACL2 model. First we define the corresponding function for the
variable s: (defun s (j) (bv-nat-be (b-and (nat-bv-be j) *maskx)))

Actually, (s j) computes (mod j 16). bv-nat-be, nat-bv-be are conversion functions according to
the big endian representation, b-and is a macro computing the logic and operation between two
bits, and between two bit-vectors of possibly distinct lengths.

The computation of a word Wy is defined by function word-spec:

(defun word-spec (j m-1i)
;computes the Wi(moa;16) of the block m-i, for (< 16 j)
(rotl 1 (b-xor
(nth (bv-nat-be (b-and (nat-bv-be (+ 13 (s j))) *maskx)) m-i)
(nth (bv-nat-be (b-and (nat-bv-be (+ 8 (s j))) *mask*)) m-i)
(nth (bv-nat-be (b-and (nat-bv-be (+ 2 (s j))) *mask*)) m-i)
(nth (bv-nat-be (b-and (nat-bv-be j) #*mask#*)) m-i))))

Temp-spec computes the variable TEMP for the step j of algorithm:

(defun temp-spec (j working-variables m-1i)
(plus (rotl 5 (nth O working-variables))
(F j (nth 1 working-variables) (nth 2 working-variables)
(nth 3 working-variables))



(nth 4 working-variables) (nth (s j) m-i) (K j)))
Finally, digest-one-block-spec, computes the variables a, b, ¢, d, e, for j steps of the algorithm:

(defun digest-one-block-spec (j working-variables m-i)
(declare (xargs :measure (acl2-count (- 80 j))))
(if (natp j)
(cond ((<= 80 j) working-variables)
;80 steps of the algorithm have been computed,
(t (digest-one-block-spec (+ 1 j)
;one computation step
(temp-spec j working-variables
(if (<= 16 j) (repl (s j) (word-spec j m-i) m-i) m-i))
;the computation of a with the new computed Mandjlm
(nth 0 working-variables) (rotl 30 (nth 1 working-variables))
(nth 2 working-variables) (nth 3 working-variables)
;the computation of b, c, d, e
(if (<= 16 j) (repl (s j) (word-spec j m-i) m-i) m-i))))
;the word Wﬁnwdjlﬁ) is replaced with the new computed one
nil))

(repl i el list), replaces the i-th element of list with el.
When one block has been processed, the values of H; are updated:
Hy = Ho+A; Hy = Hi+B; Hy = Hy+C; H3 = H3+D; Hy = Hy+E;
The function digest-spec computes the digest for a padded message m:

(defun digest-spec (m hash-values)
(if (endp m) hash-values
(digest-spec (cdr m)
;the digest computed for a block becomes
;the initial hash value for the next one
(intermediate-hash hash-values
(digest-one-block-spec O hash-values

(parsing (car m) 32))))))

The function intermediate-hash updates the hash values H;.

When the last block has been processed, the message digest contains the last values of Hy, Hi,
Hy, H3, Hy.

Sha_norm defines the specification for SHA-1: an arbitrary message m is first padded, then it
is parsed into blocks of 512 bits. The list of blocks is digested with the algorithm constants *h0*,
*h1*, *h2*, *h3* *h4* as initial hash values.

(defun sha-norm (m)
(digest-spec (parsing (padding-1-256 m) 512) (list *hO* *hl* *h2* *h3* *hdx*)))

Validation of the formal functional specification

The SHA-1 ACL2 model is executed on the test benches given in the standard document to
check that the returned result is as expected. A complementary validation is obtained by proving
the mathematical properties of the algorithm, using the ACL2 theorem prover [2]. In fact, a more
general model has been written, to capture the common principles of the four versions of the SHA
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algorithm: SHA-1, SHA-256, SHA-384 and SHA-512, which differ essentially in the sizes of the
message blocks, word, and digest. Seventy function definitions and over a hundred lemmas were
written. Among the safety theorems that were proven for the SHA-1:

e The length of the padded message is a non-zero multiple of 512.

The last 64 bits of the padded message represent the binary coding of the length.

The first L bits of the padded message represent the initial message.
The bits between the end-of-the-message bit and the last 64 bits are all 0.

After parsing the padded message, the result is a vector of blocks, each of 512 bits.
e The final result of the SHA-1 is a five 32-bit words message digest.

Due to the nature of the digest computation, there is no straightforward algebraic expression
for it; thus, the digest validation consisted in showing properties of the result of each processing
step rather then proving its equivalence with a mathematical function.

3 SHA-1 Implementation

3.1 Main characteristics of the VHDL design

The VHDL model is written at the RTL level. The SHA core is composed of a control machine
and a data path. The data path contains a compact description of the operators necessary for the
digest computation. The transition graph of the control automaton for the state machine is shown
on Figure 3.

The global behaviour is the following:

idle is the wait state;

init loads the constants Hy to Hy into the registers that store A, B, C, D, E;
SHA _init computes the first sixteen values of A, B, C, D, E, i.e. the first sixteen steps of the

algorithm;

compute_W computes one of the 64 remaining words, W;

compute_ABC computes the values of A, B, C, D, E corresponding to the previous W; the
states compute W and compute_ABC' are repeated 64 times;

result adds the last values of A, B, C, D, E to the last values of Hy to Hy respectively;



o cnt_reset resets the different counters; When the last block has been processed (L_block = 1)
then signal done is set to 1, indicating that the message digest is available.

The design is fully synchronous. The pin description of the core is given in Table 1. The design
also has 23 internal memories.

start, reset input bit start signal, asynchronous core reset
reset_done input bit invalidates the output done

clk input bit clock signal

rdata input 32-bit | Input data

base_addr input 12-bit | first word W RAM address
nb_block input 6-bit | number of blocks

addr output | 12-bit | RAM address

ram_sel, ram_write output | bit RAM select and write signals
wdata output | 32-bit | computed W to store into the RAM
busy output | bit core busy by digest computation
done output | bit digest message available

aout, bout, cout, dout, eout | output | 32-bit | message digest output

Table 1: Pin description of the SHA core

3.2 Formal model of the SHA-1 design into ACL2

The VHDL is automatically translated into a functional model using a method based on symbolic
simulation developed by our team [5]. The model is simulated symbolically for one clock cycle,
actually corresponding to several VHDL simulation cycles, to extract the transition function for
each output and state variable of the design. The body of a transition function is an if_expression,
an arithmetic or a Boolean expression. The functions are translated into Lisp and used to define
the Moore machine for the initial VHDL description. Here is the body of the corresponding tran-
sition function for the done signal.

(defun nextsig done (reset reset_done start state cnt bl done)
(if (equal reset 1) O
(if (equal state *idlex)
(if (or (equal start 1) (equal reset_done 1))
0 done)
(if (and (equal state *resultwx)
(equal cnt 0)
(equal bl (list 0 0 0 0 0 0)))
1 done))))

where, *idle*, *resultw™ are user defined constants (in VHDL) to identify the states of the finite
state machine of the VHDL design, reset and reset_done are inputs, state, cnt and bl are internal
memories, and done is an output.

A state of the Moore machine is the set of all internal memories and all the outputs of SHA. A
step is modeled as a function Sim_step which takes as parameters the inputs of SHA and the state
of the machine at clock cycle k, and which produces the state of the machine at clock cycle k+1
(k is a natural). The body of Sim_step is the composition of the transition functions obtained by
symbolic simulation.

We also extract from the VHDL the types for all input, internal and output objects. These
informations are translated into ACL2 as two predicates hyp_input and hyp_mem. Here is the
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corresponding hyp_input for the SHA-1 design.

(defun hyp-input (input)
(and (bitp (nth *reset* input))
(bitp (nth *reset_done* input))
(bitp (nth *start* input))
(wordp (nth *base_addr* input) 12)
(wordp (nth *nb_bloc* input) 6)
(wordp (nth *ram rdata32* input) 32)))

where, input is a list of inputs, *reset®, *reset_done*, etc., are ACL2 defined constants that
identify the position of signals reset, reset_done, etc., in the input list; (bitp b) is a predicate that
states b is a bit, (wordp bv n) states bv is a bit vector of length n.

The SHA-1 design implements only the digest computation and it takes as input the message
already padded from an external RAM. The RAM is also used to store the modified W} computed
during the digest.

The RAM (modeled as an alist) has the following behaviour:

e if the ram_sel bit is 1, the RAM is enabled, i.e. reading or writing is allowed;

e writing is allowed only if the ram_write bit is 1, and in this case the data wdata is written
at the address addr;

(defun write-ram (mem ram)
(if (and (equal (nth *ram_sel* mem) 1)
(equal (nth *ram writex mem) 1))
(bind-equal (nth *addr* mem) (nth *wdata* mem) ram)
ram))

e if the ram_write bit is 0, reading is allowed, and the data from the address addr is put in
rdata which is one of the inputs for the design.
(defun read-ram (mem ram)
(if (and (equal (nth *ram_sel* mem) 1)
(equal (nth *ram write* mem) 0))



(binding-equal (nth *addr* mem) ram)
nil))

The RAM is added to the state of the Moore machine (Figure 4).

The circuit is defined by the function sha_vhdl which has two parameters: the sequence of
inputs L_input and the state st. st is composed of two parts: memory is the set of all internal
and output signals of the SHA-1 and ram models the external RAM. The length of L_input gives
the number of clock cycles, and L_input represents the list of symbolic or numeric values for the
SHA-1 input ports at each clock cycle:

(list inputs_cycle-1 inputs_cycle-2 ... inputs_cycle-k)

If the inputs list is empty, the computation is finished and sha_vhdl returns the state st. Other-
wise, the next state is computed by calling the step function Sim_step, then memory and ram are
updated. Again, this model is executable, and we have initially checked it using the test benches
provided in the SHA standard.

(defun sha vhdl (L_input st)
(if (atom L_input) st
(let* ((memory (car st))

(ram (cdr st))

(new-mem
(Sim_step (cons (read-ram memory ram) (car L_input))

memory)) )

(sha_vhdl (cdr L_input)

(cons new-mem (write-ram new-mem ram))))))

4  Proof of correctness of the implementation

At this point, we have two models of SHA-1 in ACL2: the translation by hand of the standard
FIPS-180-2 sha_norm, and the automatic translation of the VHDL description sha_vhdl.

To prove that the VHDL implementation is compliant with the functional specification, we
must show that for any arbitrary input message the execution of sha_vhdl for the appropriate
input and the appropriate number of clock cycles (until the computation is done) returns the same
message digest as the one returned by sha_norm.

First we define the environment in which sha_vhdl is executed, then we compute the result of
the execution of sha_vhdl until the final state and we prove it is equivalent with some intermediate
digest functions, and at last we prove the relation between the results computed by the two models
(Theorem 10 below).

One difficulty in performing the proof is brought by the presence of the RAM in the implemen-
tation and by the added circuitry to access the informations and write back partial results during
the computation. Moreover, a 512-bit block is overwritten by the W; (16 < i < 79) words during
the digest computation (see Figure 2). In contrast, the specification is a functional algorithm that
processes each message block without side-effect.

Significant human time was spent identifying the set of intermediate functions and their prop-
erties, the composition of which could be proven equivalent to the specification on the one side,
each one corresponding to an abstraction of the behavior of the VHDL state machine, starting
from some state and for a given number of cycles.

The inputs considered for sha_vhdl are described in Table 2, where X stands for "don’t care”,
nb_bloc is the 6-bit representation of the natural number nb: the number of blocks to be processed,
base_addr is a bit-vector of size 12. nb_bloc and base_addr are symbolic.

We consider L_input as (list* input_cycle_1 input_cycle_2 input).



Cycle 1 2 3

Input input_cycle_1 | input_cycle_2 input
Reset 1 0 0

Start X 1 X
Reset_done | X X X
Nb_bloc X nb_bloc nb_bloc
Base_addr | X X base_addr

Table 2: The symbolic input for sha_vhdl

The RAM is modeled by the predicate wordp-ram:

(defun wordp-ramp (ram n) ;recognizes an alist of n-bit words
(if (alistp ram)
(if (endp ram) nil
(if (and (consp ram) (endp (cdr ram)))
(wordp (cdar ram) n)
(and (wordp (cdar ram) n)
(wordp-ramp (cdr ram) n))))
nil))

In our case, (wordp-ramp ram 32).

The RAM zone that starts at address base_addr is of particular interest, as it contains the
message to be processed by the SHA-1 design. We consider the RAM as being the concatenation
of two RAMs: (append unknown_ram base_addr_ram), where unknown_ram is an alist of no
interest for the computation and base_addr_ram is the zone starting from base_addr. The domains
of the two RAMs are disjoint. We define a predicate ramp-base that recognizes base_addr_ram.

(defun ramp-base (base_addr base_addr_ram)
(declare (xargs :measure (len ram)))
(if (alistp base_addr_ram)
(if (endp base_addr_ram) nil
(if (and (consp base_addr _ram)
(endp (cdr base_addr_ram)))
(equal (caar base_addr_ram) base_addr)
(and (equal (caar base_addr ram) base_addr)
(ramp-base (plus base_addr 1)
(cdr base_addr_ram)))))

nil))

where plus is the + operation, overloaded with the addition between two unsigned bit-vectors, and
between an unsigned bit-vector and a natural number.

Sha-vhdl needs 3 clock cycles to initialize the system and set A, B, C, D, E to their initial
values; then it needs 342 clock cycles to compute the digest for one block. The 342 cycles are
decomposed as: 16 for reading the first 16 words and computing 16 steps of digest, 320 to compute
an intermediate digest, 3 to combine the results with the initial hash values of the block, 2 to store
the message digest obtained so far. The last cycle returns to the digest computation for the next
block, or to the idle state. So, in order to process nb blocks, the design needs 3 + (342 x nb) clock
cycles.



The above could let the reader believe that we are performing simulation. This is not the case.
A stepwise approach is developed, which proves intermediate theorems for each main computation
step of the overall sha_vhdl. A computation step corresponds to a state of the VHDL state machine
(Figure 3).

Each computation step is first generalized to perform some function for an arbitrary number
k of clock cycles and then proved by induction on k and on the circuit state. Specific induction
schemes had to be constucted for this purpose. Then k is instanciated to the actual number of cycles
performed by the circuit (16 for SHA _init, 320 for looping between compute_w and compute_ABC,
etc... see Figure 3). The reasoning engine considers the initial value of all memories and registers
as arbitrary, and nb (the number of blocks) to be an unbounded (but finite) natural integer.

The overall proof is decomposed as a set of theorems that prove the result of the VHDL design,
for a number of clock cycles, equal with some intermediate functions:

e Theorems 1 to 3 establish the results of the initialization phases;

e Theorem 4 corresponds to the first 16 computation steps: the RAM is unchanged;

e Theorem 5 corresponds to the subsequent 64 steps: the block is overwritten in the RAM;

e Theorems 6 and 7 update the block digest and initialize the computation for the next block;
e Theorem 8 combines Theorems 3 to 7 to establish the result of 342 clock cycles over one block;

e Theorem 9 combines Theorems 1, 2, 8 to establish the result of the VHDL computation for
nb blocks (over 3+342*nb cycles);

e finally, Theorem 10 says that the result considered in Theorem 9 is equal to the message
digest computed by the specification.

Because of the big number of state variables, we only refer to some of them, which seem im-
portant to illustrate our approach: a, b, ¢, d, e are 32-bit registers storing the digest computation,
state is a 3-bit vector giving the state of the VHDL finite state machine, bl is a 6-bit word rep-
resenting the number of blocks that remain to be processed, count is a 8-bit word counting the
iterations of the digest. In the following theorems, all these variables are components of the global
state st.

The following theorems hold for the input and the RAM defined as above.

Theorem 1 Starting from an arbitrary state, after one cycle, with input_cycle_1 as input, the
system is in the idle state and the RAM is not modified.

Proof: By symbolic execution of sha_vhdl for one clock cycle:
(sha_vhdl (list (car L_input)) st), where st is an arbitrary state. [J

Theorem 2 Starting from state idle, after 2 cycles, the system is in state init, the state variables
a, b ,c, d, e are initialized with the initial hash values: h0, h1, h2, h8, h4, which are constants of
the standard, bl is initialized with the number of block to be processed, i.e. mb_bloc, all the other
state variables are initialized and the RAM is not modified.

Proof: First we execute symbolically sha_vhdl, with input_cycle.2 as input, for one clock cy-
cle. Then, starting from the resulting state, we execute sha_vhdl once more for one clock cycle,
providing (car input) as input. We combine the two theorems using the property:
(equal (sha_vhdl (firstn i in) (sha_vhdl (firstn j in) st))
(sha_vhdl (firstn (+ i j) in) st)), ¢, j naturals and (< (+ i j) (len in)).
O

10



Theorem 3 Starting from state init, after 1 cycle the system is in the SH A_init state (i.e. the
computation can begin), count="00000000" and the memory has not changed.

Proof: By symbolic execution of sha_vhdl for one clock cycle. O

Theorem 4 Starting from the initial computation state (state=SH A_init, count="00000000"),
after 16 cycles, the RAM is not modified and the system variables verify the following:
state=compute_ W, count="00010000" and a, b, c, d, e, hold the result of the first 16 steps of the
digest computation:

(digest-one-block-impl 16 (0 0 0 0 0 0 0 0)
(nth *a* (memory st)) (nth *b* (memory st))
(nth *c* (memory st)) (nth *d* (memory st))
(nth *e* (memory st)) (ram st)
(nth *base_addr* (car input)) (nth *nb_bloc* (car input))
(nth *bl* (memory st)))
where (memory st) is (car st), (ram st) is (cdr st).

Proof: See Appendix.

Theorem 5 Starting from the computation state for the first word (state=compute W, count=
7000100007), after 320 cycles, the RAM is modified as described by function modified-ram, and
the system variables verify the following: state=result, count="01010000", and a, b, c, d, e hold
the result of the last 64 steps of the digest computation:

(digest-one-block-impl 64 (0 0 0 1 0 0 0 0)
(nth *a* (memory st)) (nth *b* (memory st)) (nth *cx (memory st))
(nth *d* (memory st)) (nth *e* (memory st)) (ram st)
(nth *base_addr* (car input)) (nth *nb_bloc* (car input))
(nth #bl* (memory st)))

(defun modified-ram (i count ram base_addr nb_bloc bl)
(if (zp i) ram
(if (<= 16 (bv-nat-be count))
(modified-ram (- i 1) (plus 1 count)

(bind-equal (next-addr-word nb_bloc bl base_addr count 0)

;the new computed word is written in the RAM at its corresponding address
(word-impl count base nb_bloc bl ram)
ram)

base nb_bloc bl)

(modified-ram (- i 1) (plus 1 count) ram base nb_bloc bl))))

Proof: See Appendix.

Theorem 6 Starting from the result state (state=result), after 3 cycles, the system wvariables
verify the following: state=cnt_reset, the number of blocks to be processed, bl, is decremented and
a, b, ¢, d, e are added to h0, h1l, h2, h3, h4, which are intended to hold the hash values during the
computation.

Proof: By symbolic execution of sha_vhdl for one clock cycle. [J

11



Theorem 7 Starting from the reseting state (state=cnt_reset), after 2 cycles, if the number of
blocks to be processed is higher than 0, then state=init and count is reset to “00000000”, otherwise
state=idle , done is 1 and the values of a, b, ¢, d, e are available as output.

Proof: By symbolic execution of sha_vhdl for one clock cycle. O
By combining Theorem 3 to 7, we have:

Theorem 8 Starting from the initial state (state=init), after 1+16+320+3+2=342 clock cycles,
if the number of blocks to be processed is higher than 0, then the system is in the initial state
(state=init), otherwise it is in the idle state (state=idle), and in both cases RAM is

(modified-ram 80 (0 0 0 0 0 0 O 0) (ram st)
(nth *base_addr* (car input)) (nth *nb_bloc* (car input)))

and a, b, ¢, d, e hold the result of the digest for one block:

(intermediate-digest

(1ist (nth *a*x (memory st)) (nth *b*x (memory st))
(nth *c* (memory st)) (nth *d* (memory st))
(nth *e* (memory st)))

(digest-one-block-impl 80 (0 0 0 0 0 0 O 0)
(nth *a* (memory st)) (nth *b* (memory st))
(nth *c* (memory st)) (nth *d* (memory st))
(nth *ex (memory st)) (ram st)
(nth *base_addr* (car input)) (nth *nb_bloc* (car input))
(nth *bl* (memory st))))

Now we can prove the general computation theorem for sha_vhdl:
Let n be the number of blocks of the message, nb=(bv-nat-be (nth *nb_bloc* (car input))).

Theorem 9 Starting from any state, for any message of n blocks, stored in RAM at address
base_addr, after the execution of sha_vhdl for (+ 8 (* 342 nb)) clock cycles, the system is in its
final state (done = 1) and the values of the output are equal to the result of digest-impl on the
same message:

(digest-impl (list *hO* *hl* *h2% *h3% *hdx*)
(ram st) (nth *base_addr* (car input))
(nth *nb_bloc* (car input)) (nth *nb_bloc* (car input)))

Proof: See Appendix.

Now let us prove that the implementation is compliant with the specification model.
A little problem arises because sha_vhdl uses as input the message already padded, contrary
to sha_norm which has as input the initial message. So, instead of comparing sha_vhdl with
sha_norm, we compare it with digest-spec.

Theorem 10 Starting from any state, for any message of nb blocks stored in RAM at address
base_addr, after the execution of sha_vhdl for (+ 8 (* 342 nb)) clock cycles, the system is in its
final state (done = 1) and the values of the output are equal to the result of the digest-spec applied
to the message parsed in blocks of 512 bits:
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(digest-spec
(parsing (concat (get-i-ram (* 16 (bv-nat-be (nth *nb_bloc* (car input))))
(nth *base_addr* (car input)) (ram st))) 512)
(list *hO* *hlx *h2% *h3% *h4x*))

Proof: As the padded message to be digested, M, is stored into the RAM,

M = (concat (get-i-ram (* 16 nb_bloc) base_addr ram)),
where (get-i-ram ¢ addr ram) returns the list of ¢ words from ram, starting from address addr,
and (concat [) concatenates all elements of {.

(defun get-i-ram (i addr ram)

(if (zp i) nil
(cons (binding-equal addr ram)
(get-i-ram (- i 1) (plus 1 addr) ram))))

The block ¢ of M, M; is (get-i-ram 16 (plus base_addr (* 16 i)) ram). The current block i is
(bv-nat-be (minus nb_bloc bl)).

Using Theorem 9, this comes to prove:

(equal (digest-impl (1list *hO* *hl* *h2* *h3* *xh4*)
(ram st) (nth *base_addr* (car input))
(nth *nb_bloc* (car input)) (nth *nb_bloc* (car input)))
(digest-spec
(parsing (concat
(get-i-ram (* 16 (bv-nat-be (nth *nb_bloc* (car input))))
(nth *base_addr* (car input)) (ram st))) 512)
(list *hOx *hlx *h2% *h3% *h4x*)))

We first prove a generalized form of the property above: the implementation model and the
specification model computes the same message digest for k = (bv-nat-be (minus nb_bloc bl)) blocks
of message, and for same initial hash values.

(equal (digest-impl hash-values ram base_addr nb_bloc bl)
(digest-spec
(parsing (concat
(get-i-ram (* 16 (bv-nat-be bl))
(plus base_addr (* 16 (bv-nat-be (minus nb_bloc bl))))
ram)) 512)
hash-values)

This is proven using the induction scheme generated by digest-impl.
A large number of lemmas are needed in order to complete the proof, only the top level ones
are briefly described:

Lemma 1 The result of the computation of the digest of one block is the same in both specification
and the implementation model:

(equal (digest-one-block-impl 80 ‘(0 0 0 0 0 0 0 0) a b ¢ d e ram base_addr nb_bloc bl)
(digest-one-block-spec 0 (list a b c d e)
(get-i-ram 16 (plus base_addr
(* 16 (bv-nat-be (minus nb_bloc bl)))) ram)))
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Proof: We first prove a generalized form of the lemma:
(equal (digest-one-block-impl (- 80 (bv-nat-be count))
count a b ¢ d e ram base_addr nb_bloc bl)
(digest-one-block-spec (bv-nat-be count) (list a b ¢ d e)
(get-i-ram 16 (plus base_addr
(x 16 (bv-nat-be (minus nb_bloc bl)))) ram)))

This is proven using the induction scheme generated by digest-one-block-impl.
For the proof to succeed, several properties are needed:

e The computation of the word Wi,,04 count 16) 18 the same in both the specification and the
implementation model:

(equal (word-impl count base_addr nb_bloc bl ram)
(word-spec (bv-nat-be count)
(get-i-ram 16
(plus base_addr(* 16 (bv-nat-be (minus nb_bloc bl))))
ram))

e The left rotating operations in both implementation and specification model are equal:

(equal (append (segment 5 32 a) (segment O 5 a))
(rotl 5 a))

(equal (next-b b) (rotl 30 b))

e The logical function used in the implementation is equal to the specification defined one:
(equal (f-impl count b ¢ d) (f (bv-nat-be count) b c d))

e In both models the replacement of the word W(,,0d count 16) With the new computed one has
the same effect on the initial message:

(equal (get-i-ram 16 (plus base_addr (* 16 (bv-nat-be (minus nb_bloc bl))))
(bind-equal (next-addr-word nb_bloc bl base_addr count 0)

(word-impl count base_addr nb_bloc bl ram) ram))
(repl (s (bv-nat-be count))

(word-spec (bv-nat-be count)
(get-i-ram 16 (plus base_addr

(* 16 (bv-nat-be (minus nb_bloc bl))))
ram))
(get-i-ram 16 (plus base_addr

(x 16 (bv-nat-be (minus nb_bloc bl))))
ram)))

This is an instantiation of a more general property:

(equal (get-i-ram n addr (bind-equal (plus addr x) y ram))
(repl (bv-nat-be x) y (get-i-ram n addr ram)))

d

Lemma 2 After processing k blocks, the memory storing the rest of the message to be processed
(starting from the address (plus base (* 16 k))) is unaltered.

14



(equal (get-i-ram n (plus base i (* 16 (bv-nat-be (minus nb_bloc bl))))
(modified-ram j count ram base nb_bloc bl))
(get-i-ram n (plus base i (* 16 (bv-nat-be (minus nb_bloc bl))))))

Proof: By induction using the scheme:

(defun induction-scheme-get-i-ram (n i)
(if (or (zp n) (zp 1)) t
(induction-scheme-get-i-ram (1- n) (1+ i))))
O
All theorems use a large number of properties that we proved about bit-vectors and operations
with bit vectors (logical, arithmetic, concatenation, shifting, conversions, etc), about the RAM
and L_input.

5 Conclusion

The benefits of our research for the project are multiple. For proving a SHA-1 circuit, we pro-
duced executable and reusable specifications for a standard algorithm that was previously available
under an informal notation only and we also developed a stepwise method for the proof of the im-
plementation vs specification, based on the state machine of the RTL. This approach can be reused
for other control - data path combined designs. The proof of correctness of the RTL implementation
with respect to the functional specification for an arbitrary message, could be performed only using
theorem proving techniques, and involved significant human time. The investment was however
justified by the high degree of security expected from the circuit application. A library of functions
and theorems over bit vectors was developed: this library is reusable for other applications.

The concurrent development of the design and of the proof were beneficial: the modeling effort
was performed in close interaction with the design, and could provide early feed-back on the design
style.

A couple of errors were also uncovered in the initial VHDL, the most serious being an excessive
number of cycles in the digest computation. The use of an executable logic was key to the successful
validation of both the specification and the RTL, as it provides an easy model debugging facility.

We believe that the design of a reusable core module should increasingly come with its formal
proof of correctness: our work demonstrates that this is feasible, and shows a strategy to reach
this goal.
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Appendix: Proof of theorems

A.1 Proof of theorem 4
We define the implementation digest for one block as:

(defun digest-one-block-impl (i count a b ¢ d e ram base_addr nb_bloc bl)
(if (zp i) (list a b c d e)
(digest-one-block-impl
(- i 1) (plus count 1)
(temp-impl count a b c d e
(if (<= 16 (bv-nat-be count))
(word-impl count base_addr nb_bloc bl ram)
(binding-equal (next-addr-word nb_bloc bl base_addr count 0) ram)))
a (next-b b) c d
(if (<= 16 (bv-nat-be count))
(bind-equal (next-addr-word nb_bloc bl base_addr count 0)
(word-impl count base_addr nb_bloc bl ram) ram)
ram)
base_addr nb_bloc bl)))

Where:

e temp-impl computes the intermediate variable TEMP,

(defun temp-impl (count a b ¢ d e data)
(plus (F-impl count b ¢ d) e data
(append (segment 5 32 a) (segment 0 5 a))
(K (bv-nat-be count))))

e next-addr-word computes the address of W,nod(pius i count)16) relative to base_addr. The words
of the block k=(bv-nat-be (minus nb_bloc bl)) are read in these 16 cycles. minus is the -
operation overloaded with the substraction between two bit-vectors, and between a bit-vector
and a natural.

(defun next-addr-word (mb_bloc bl base_addr count i)
(plus (plus base_addr (plus i (segment 4 8 count)))
(x 16 (bv-nat-be (minus nb_bloc bl )))))

o word-impl computes Wiy,o0d count 16), if (< 16 count):
(defun word-impl (count base_addr nb_bloc bl ram)
(shift (b-xor
(binding-equal (next-addr-word nb_bloc bl base_addr count 0) ram)
(binding-equal (next-addr-word nb_bloc bl base_addr count 2) ram)
(binding-equal (next-addr-word nb_bloc bl base_addr count 8) ram)
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(binding-equal (next-addr-word nb_bloc bl base_addr count 13) ram)))

To prove Theorem 4 we first prove a more general form:

Theorem 4 generalized Starting from any of the first 16 computation states (state=SH A_init,
(< (+ j count) 16), (< 1 j)), after j clock cycles,

if (equal (+ j count) 16) then state=compute W, otherwise state=SH A_init.

In both cases a,b,c,d,e hold the result of j digest steps computed by the function digest-one-block-
impl, count is incremented by j and the RAM is unchanged.

The theorem is proved by induction using the scheme:

(defun induction-scheme-1-cycle (j input st)
(if (or (zp j) (endp input) (atom st)) t
(induction-scheme-1-cycle (1- j)
(nthedr 1 (firstn j input)) (sha_vhdl (firstn 1 input) st))))

The following property of digest-one-block-impl is needed for the proof to succeed:
If (and (< (+ i j count) 16) (< 114)), 4, j naturals, let digest-j-steps be equal to (digest-one-block-
impl j count a b ¢ d e ram base_addr nb_bloc bl), then
(equal (digest-one-block-impl i (plus count j)

(car digest-j-steps) (nth 1 digest-j-steps) (nth 2 digest-j-steps)

(nth 3 digest-j-steps) (nth 4 digest-j-steps)

ram base_addr nb_bloc bl)

(digest-one-block-impl (+ i j) count a b ¢ d e ram base_addr nb_bloc bl))

The proof also uses several lemmas on input, ram and bit-vector operations.
In the generalized theorem, if j is instantiated with 16 and count with “00000000”, we obtain
the theorem to prove.[]

A.2 Proof of theorem 5

The 5*64=320 cycles are needed to compute the digest of a block: 5 cycles for the computation
of TEMP (the intermediate variable) and the algorithm must be applied 64 times to compute the
intermediate digest.

First we prove a generalized version of the theorem:

Theorem 5 generalized Starting from any word computation state (state=compute-W), (< (+
j count) 80) and (< 1 j)), after (* 5 j) cycles, if (equal (+ j count) 80) then state=result,
otherwise state=compute_W .

In both cases a,b,c,d,e hold the result of j digest steps computed by the function digest-one-block-
impl, count is incremented by j, and RAM is

(modified-ram j count (ram st) (nth *base_addr* (car input)) (nth *nb_bloc* (car input))).

The theorem is proved by induction using the scheme:
(defun induction-scheme-5-cycles (j input st)
(if (or (zp j) (endp input) (atom st)) t

(induction-scheme-5-cycles (1- j)
(nthedr 5 (firstn (* 5 j) input))
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(sha_vhdl (firstn 5 input) st))))

Some intermediate theorems are needed to compute the behaviour of sha_vhdl for 5 cycles,
starting from compute W state:

Theorem 5.1 Starting from any word computation state (state=compute W ), after J cycles, the

corresponding Wimod count 16) word is computed by word-impl, state=compute ABC, count and
RAM are unchanged.

Theorem 5.2 Starting from any variables computation state (state=compute_ ABC, (< count
79)), after one cycle

- if count is 79 then the algorithm finished and state=result,

- otherwise, the algorithm was applied less than 79 times and state=compute W ;
In both cases count is incremented, TEMP is computed and Wiod count 16)-
(word-impl (nth *count* (memory st)) (nth *base_addr* (car input))

(nth *nb_bloc* (car input)) (nth *bl* (memory st)) (ram st))
is written in RAM at the address

(next-addr-word (nth *nb_bloc* (car input)) (nth *bl* (memory st))
(nth *base_addr* (car input)) (nth *count* (memory st)) 0).

The following properties of digest-one-block-impl and modified-ram are also needed for the proof
to succeed:

For ¢, j naturals:
o Let digest-j-steps be equal to (digest-one-block-impl j count a b ¢ d e ram base_addr nb_bloc
bl), then:
(equal (digest-one-block-impl i (plus count j)
(car digest-j-steps) (nth 1 digest-j-steps) (nth 2 digest-j-steps)
(nth 3 digest-j-steps) (nth 4 digest-j-steps)
(modified-ram j count ram base nb_bloc bl)
base_addr nb_bloc bl)

(digest-one-block-impl (+ i j) count a b ¢ d e ram base_addr nb_bloc bl))

o (equal (modified-ram i (plus count j)

(modified-ram j count ram base nb_bloc bl) base nb_bloc bl)
(modified-ram (+ i j) count ram base nb_bloc bl))

In the generalized theorem, if j is instantiated with 64 and count with “00010000”, we obtain the
theorem to prove. [

A.3 Proof of theorem 9
We define the general implementation digest function as:

(defun digest-impl (hash-values ram base_addr nb_bloc bl)
(if (equal (bv-nat-be bl) 0) hash-values
(digest-impl
(intermediate-digest hash-values
(digest-one-block-impl 80 ‘(0 0 0 0 0 0 0 0)

(car hash-values) (nth 1 hash-values) (nth 2 hash-values)
(nth 3 hash-values) (nth 4 hash-values)
ram base_addr nb_bloc bl))
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(modified-ram 80 ‘(0 0 0 0 0 0 O 0) ram base_addr nb_bloc bl)
base_addr nb_bloc (minus bl 1))))

We prove the Theorem 9 using Theorem 1, Theorem 2 and by instantiating bl with
nb_bloc in a more general form of the theorem:

Theorem 9 generalized Starting from the initial state (state=init), with (< bl nb_bloc) and (<
1 bl), after the execution of sha_vhdl for (* 342 bl) clock cycles, if bl and nb_bloc hold the same
values, then the system is in its final state (done = 1), otherwise it is in the initial state. In both
cases the RAM is modified, bl is decremented, and the values of a, b, ¢, d, e are equal to the result

of digest-impl on the message stored in RAM starting from the address (plus base_addr ( 16 (minus
nb_bloc bl))).

The theorem above is proved by induction using the scheme:

(defun induction-scheme-digest (j input st)
(if (or (zp k) (endp input) (atom st)) t
(induction-scheme-digest (1- j)
(nthcdr 342 (firstn (* 342 j) input))
(sha_vhdl (firstn 342 input) st))))

where j is (bu-nat-be (nth *bl* (memory st))).
The following property of digest-impl is needed for the proof to succeed:
If (< (plus i j) nb_bloc), i, j 6-bit vectors
(equal (digest-impl
(digest-impl hash-values ram base_addr nb_bloc i)

(modified-ram 80 (0 0 0 0 0 O 0 0) ram base_addr nb_bloc)
base_addr nb_bloc j)

(digest-impl hash-values ram base_addr nb._bloc (plus i j)))
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