
Reverse Abstra
tion in ACL2William D. YoungUniversity of Texas at Austin1Department of Computer S
ien
es1 Introdu
tionFormal models of digital systems are
onstru
ted for a variety of purposes, not all of them mutually
ompatible. A model that is
onstru
ted as a formal simulator for a digital system may be highlyoptimized for eÆ
ient exe
ution. A more abstra
t model may be less eÆ
ient, but stru
tured tofa
ilitate proofs of system properties. In an ideal world, any model would be abstra
t,
omprehen-sible, analyzable and eÆ
iently exe
utable. However, it is often diÆ
ult to build a single modelthat supports su
h disparate goals.One possible solution is to
onstru
t an abstra
t system model, and then re�ne it through someseries of steps to eke out the required level of exe
ution eÆ
ien
y (eg. [4℄). Sometimes, however,the artifa
t at hand is not an abstra
t model that
an be re�ned for eÆ
ien
y, but a very low-levelmodel that has been hand-tooled for eÆ
ient exe
ution. This was the
ase with the Ro
kwell CollinsAAMP7 pro
essor model[3℄; the need for exe
ution eÆ
ien
y led to a very low-level spe
i�
ationhighly optimized for speed. Be
ause of the la
k of abstra
tion, the model is hard to understandand proofs very diÆ
ult to
onstru
t.To fa
ilitate proofs of AAMP7 programs, it be
ame desirable to introdu
e abstra
tions into themodel. Sin
e it was not possible in the
urrent proje
t to rebuild the model from s
rat
h, we de
idedto investigate the feasibility of retro�ting the model with appropriate abstra
tions. By analogy with\reverse engineering," we
all this pro
ess \reverse abstra
tion."2 The goal is to repla
e a low-levelsystem model with a more
on
eptually abstra
t version that is provably semanti
ally equivalent,but more amenable to formal reasoning. It is
learly infeasible to me
hani
ally re
ognize appropriateabstra
tions from a low-level spe
i�
ation. But, on
e a human has identi�ed useful abstra
tions,automation
an assist in managing the reverse abstra
tion pro
ess, and assuring that insertingabstra
tions preserves the semanti
s of the target system.In this report, we des
ribe the reverse abstra
tion pro
ess as applied to a very detailed existingformal spe
i�
ation, the Ro
kwell Collins AAMP7 formal model. We used the ACL2 theoremproving system[2℄ to manage the pro
ess, used the ACL2 rewriter to repla
e
omplex terms by moreabstra
t versions, and used the prover to assure that the pro
ess preserved semanti
 equivalen
e.In addition to providing a more intelligible and a

essible formal
hara
terization of the AAMP7instru
tion-level semanti
s, there was a rather surprising additional bene�t. Even though the1This work was supported at the University of Texas at Austin by a
ontra
t from Ro
kwell Collins, Proje
t#450117702, Instru
tion-level Model of the AAMP7 in ACL2.2One of the anonymous reviewers thought this term misleading, be
ause the two versions are semanti
ally equiv-alent. I would argue that \abstra
tion" is often used in pla
es where that is true. \Pro
edural abstra
tion," forexample, doesn't ne
essarily imply elimination of detail, merely hiding detail to repa
kage fun
tionality into a more
ongenial form. I believe that that is pre
isely what is a

omplished here.

Reverse Abstra
tion 2low-level AAMP7 model was
onstru
ted for eÆ
ient exe
ution, the reverse abstra
tion pro
essilluminated several ineÆ
ien
ies. The abstra
ted model
ould a
tually be faster than the low-levelmodel, though we have not yet validated this.2 The AAMP7 ModelThe AAMP7 model is a detailed instru
tion-level model of a
ommer
ial pro
essor. It
omprisesmany megabytes of formal spe
i�
ation, exe
utable
ode, and supporting theory, and representsa monumental intelle
tual e�ort in the appli
ation of formal methods to digital design. Thise�ort was supported by the ACL2 automated analysis tool-suite. Exe
utable spe
i�
ations werewritten in the logi
 of ACL2 and formally analyzed to satisfy a variety of properties, in
luding well-formedness of de�nitions, type restri
tions on the arguments to fun
tions, and formal relationshipsamong various fun
tions in the spe
i�
ation. All of these proofs were me
hani
ally
he
ked usingthe ACL2 theorem prover.The ACL2 ma
ro fa
ility is used in an extremely sophisti
ated manner in this spe
i�
ation. A readerma
ro is de�ned that allows the spe
i�
ation of individual AAMP7 instru
tions in an imperativestyle. For example, the following fun
tion des
ribes the semanti
s of the LIT16 operation, whi
htakes a 16-bit literal from the instru
tion stream and pla
es it on the pro
essor sta
k.3(defun op-lit16 (st)(de
lare (xargs :stobjs (st)))(AAMP *state->state*(fet
h_word ux);(push ux);st))Here, AAMP is a ma
ro that interprets its arguments as follows. The �rst argument spe
i�es thatthis fun
tion is a state to state transformation. The e�e
t on the state is equivalent to exe
utingthe listed pseudo-instru
tions in sequen
e and then returning the resulting state. Lo
al variablesare introdu
ed where needed.The AAMP ma
ro essentially embeds within ACL2 an intuitive, imperative language for spe
ifyingpro
essor operations. Ma
ro expansion must transform this into an appli
ative form, typi
ally afun
tional expression involving a

esses and updates on the single-threaded obje
t[1℄ representingthe state. The ma
ro expansion of (op-lit16 st) is shown in Figure 1. Note that LIT16 is one ofthe simplest AAMP7 operations. By
omparison, the ma
ro expansion of the
orresponding bodyof the ADD instru
tion is several hundred lines of text.4The AAMP ma
ro fa
ility provides a
ongenial vehi
le for spe
ifying the semanti
s of operations.However, it presents a nightmare for anyone attempting to prove properties of AAMP7 instru
tions.The prover immediately expands the ma
ro
all, and whatever abstra
tion is provided by the3The AAMP7 model is a moving target. The semanti
s des
ribed here is not entirely up to date.4This
omplexity arises be
ause the semanti
s a

urately
aptures the potential ex
eption behavior of the opera-tion. The LIT16 instru
tion
annot raise an ex
eption.

Reverse Abstra
tion 3(update-nth*aamp.ram*(write_memory(makeaddr (nth *aamp.denvr* st)(logand 65535(logext 32 (+ -2 (nth *aamp.tos* st)))))(ga

::rx 16(makeaddr (nth *aamp.
envr* st)(nth *aamp.p
* st))(nth *aamp.ram* st))(nth *aamp.ram* st))(update-nth*aamp.tos*(logand 65535(logext 32 (+ -2 (nth *aamp.tos* st))))(update-nth *aamp.p
*(logand 65535(logext 32 (+ 2 (nth *aamp.p
* st))))st))) Figure 1: Semanti
s of LIT16 instru
tionimperative form disappears. The user attempting to reason formally about AAMP7 operations orprograms is
onfronted with
onje
tures involving huge and
omplex terms.3 Reverse Abstra
tionWhile the AAMP7 model fun
tions well in the role of a formal simulator, it is hopeless as a basisfor reasoning about AAMP7 programs. Two remedies to this situation seemed possible:1. rewrite the entire model in a more abstra
t style;2. dis
over a way to preserve the existing model, but \retro�t" it with abstra
tions that aremore amenable to formal analysis.The �rst was infeasible under the
urrent
ontra
t. The se
ond required a new approa
h that we
all reverse abstra
tion.The idea of reverse abstra
tion is to take re
urring low-level forms within a spe
i�
ation and torewrite them into a more abstra
t and perspi
uous form. For example: in the OP-LIT16 de�nitionin Figure 1, the following form appears three times:(logand 65535 (logext 32 (+ k x)))This is a standard lo
ution in the AAMP7 spe
i�
ation for adding two 16-bit quantities. Thisexpression is provably equivalent to the slightly simpler logi
al expression:

Reverse Abstra
tion 4(loghead 16 (+ k x)).By applying a rewrite rule, we
an always eliminate the more
omplex form in favor of this simplerform. However, this still leaves the spe
i�
ation in terms of the logi
al operation LOGHEAD. Wewould like to repla
e this form with something more intuitive.We de�ne the following fun
tion and rewrite rule:(defun plus16 (k x)(de
lare (xargs :guard (and (integerp k)(integerp x))))(loghead 16 (+ k x)))(defthm plus16-abstra
tor(equal (loghead 16 (+ k x))(plus16 k x)))The lemma proves immediately simply by opening up the de�nition of PLUS16. Having this rulearound during a proof attempt ensures that terms of the form(loghead 16 (+ k x))will be rewritten to
orresponding terms of the form(plus16 (+ k x)).It is ne
essary to disable the fun
tion PLUS16; otherwise, the rewriter will get into an in�nite loopof opening the fun
tion, rewriting it into its more abstra
t form, opening it, et
.This pro
ess is very stylized and
an all be a

omplished with a ma
ro. We de�ne a ma
roDEFABSTRACTOR to perform these steps. The relevant
all then appears as:(defabstra
tor plus16 (k x)(loghead 16 (+ k x)))This en
apsulates the de�nition of the PLUS16 fun
tion, the de�nition of the rewrite rule, and thedisabling of the fun
tion. (It would probably be good to disable the rewrite rule as well, sin
e wewant reverse abstra
tion to o

ur sele
tively. We will likely do that in the next version.)This simple example illustrates the te
hnique of reverse abstra
tion. It
an be summarizes asfollows:1. identify
ommon low-level forms in the spe
i�
ation;2. de�ne an \abstra
tion fun
tion" in terms of the low-level form;3. rewrite the low-level form into the more abstra
t version;

Reverse Abstra
tion 54. disable the abstra
tion fun
tion to prevent looping.The result is an automati

apability to repla
e a given form by a
on
eptually more abstra
tequivalent.At times, various low-level forms
an be rewritten to the same abstra
tion. For example, the AAMPma
ro sometimes emits(logand 65535 (add32 x k))instead of(logand 65535 (+ k x)).Adding the following rewrite rule establishes that the two forms are semanti
ally equivalent andeliminates a se
ond synta
ti
ally di�erent form in favor of our preferred abstra
tion.(defthm plus16-abstra
tor-2(equal (logand 65535 (add32 x k))(plus16 k x)))Abstra
tions may be nested, i.e., de�ned in terms of other abstra
tions. For example, the ab-stra
tion fun
tion NEXT-STACK-ADDRESS is de�ned in terms of the previously introdu
ed PLUS16fun
tion. The abstra
tor lemma for NEXT-STACK-ADDRESS won't apply until the abstra
tor forPLUS16 has already done its work.(defabstra
tor next-sta
k-address (st)(makeaddr (nth *aamp.denvr* st)(plus16 -2 (nth *aamp.tos* st))))By introdu
ing a series of abstra
tions, whi
h are automati
ally applied, it is possible to repla
e a
ompli
ated and non-intuitive expression su
h as that in Figure 1 with a form that is mu
h easierto understand.After the abstra
tions are applied, it often be
omes easier to spot useful simpli�
ations. Forexample, multiple updates to the same state
omponent
an be
onsolidated. This requires provingrewrites in terms of the abstra
tion fun
tions. For example, we
an prove the following rewrite:(defthm in
-p
-in
-p
(implies (and (st-p st)(unsigned-byte-p 16 (+ i j (p
 st))))(equal (in
-p
 i (in
-p
 j st))(in
-p
 (+ i j) st))))

Reverse Abstra
tion 6In parti
ular, we proved the following lemma, where the right hand side of the rewrite was \auto-mati
ally" generated via reverse abstra
tion from the expansion of (OP-LIT16 ST) given in Figure1.5 This lemma is trivial to prove sin
e the left and right sides are essentially identi
al, on
e theabstra
tion fun
tions open.(defthm lit16-rewriter(implies (st-p st)(equal (op-lit16 st)(write-to-ram (next-sta
k-address st)(fet
h-
ode-word (p
 st)(
envr st)(ram st))(in
-tos -2 (in
-p
 2 st)))))This lemma now provides an alternative semanti
s for the LIT16 operation. Hopefully, this seman-ti
s is easier to deal with in a proof
ontext for several reasons. We
an
on
eptualize the proofat the level of the abstra
tion fun
tions. By proving appropriate lemmas about our abstra
tionswe
an raise the level of proof to a more abstra
t plane. By sele
tively disabling the abstra
-tion fun
tions we
an hide the morass of details generated by the AAMP ma
ro during any proofattempt.Moreover, be
ause the same basi
 forms are used throughout the spe
i�
ation, a relatively small
olle
tion of well-
hosen abstra
tion fun
tions
an provide enormous bene�ts. For example, theabstra
tions de�ned for the LIT16 operation applied to most of the other operations in the AAMP7model. Thus, the in
remental e�ort in applying reverse abstra
tion to ea
h subsequent operationswas less and less.4 Performan
e IssuesThe use of ma
ros allows the semanti
s of AAMP7 operations to be modeled very intuitively in animperative style. However, sin
e the underlying logi
 is appli
ative the expansion of these ma
roexpressions is ultimately a nest of a

esses and updates to a single-threaded obje
t representingthe pro
essor state. For even a fairly simple operation su
h as ADD, the resulting expansion is trulydaunting.The expansion may also
ontain some surprising ineÆ
ien
ies. This is be
ause operational behav-ior ne
essary in an iterative
ontext is often highly
ounterprodu
tive in an appli
ative
ontext.Consider a potential operation (ADDI X Y), adding two literal values X and Y on a hypotheti
alsta
k-based ma
hine.6 Assuming an AAMP7-style reader ma
ro, the semanti
s of this operationmight be de�ned in an imperative style by the following de�nition.5This was done by using the ACL proof-
he
ker utility to manipulate the
omplex term in Figure 1. Afteridentifying likely abstra
tions and introdu
ing abstra
tion fun
tions and rewrites, these were applied intera
tively inthe proof
he
ker until the term was massaged into a
ongenial form, namely the right hand side of the LIT16-REWRITERlemma shown below.6The point is more easily made on a hypotheti
al ma
hine than on the AAMP7, though it
ertainly applies there.

Reverse Abstra
tion 7(defun op-addi (st)(reader'((fet
h-word x)(push x)(fet
h-word y)(push y)(add))))As a spe
i�
ation artifa
t, this is
onsise and intuitive. But, if translated naively, it may a
tuallylead to very ineÆ
ient exe
ution.Emulating this imperative ma
hine dire
tly in an appli
ative
ontext, ma
ro expansion might gen-erate something like the semanti
 fun
tion.(defun op-addi-2 (st)(let ((X (fet
h-
ode-word st))(Y (fet
h-
ode-word (in
rement-p
 st))))(in
rement-p
 2(write-to-sta
k (+ (fet
h-tos 0 st)(fet
h-tos 1 st)))(de
rement-tos(write-to-sta
k Y(in
rement-tos(write-to-sta
k X(in
rement-tos st))))))))Assuming that the various
omponents of the state are disjoint, OP-ADD-2 is
learly|and hopefully,provably|equivalent to:(defun op-addi-3 (st)(write-to-sta
k (+ (fet
h-
ode-word st)(fet
h-
ode-word (in
rement-p
 st)))(in
rement-p
 2(in
rement-tos st)))).This version likely exe
utes somewhat more eÆ
iently than OP-ADD-2. The transformation fromOP-ADD-2 to OP-ADD-3 is easily a

omplished with a series of obvious rewrite rules. However, if thesystem simulator dire
tly exe
utes the output of the reader ma
ro|as happens with the AAMP7|there is no opportunity for this rewriting optimization to o

ur. The result is that the simulatorperforms multiple, and sometimes redundant, updates on sele
ted elements of the state.As an alternative, we
an prove that the naive translation is equivalent to the more eÆ
ient,optimized version. After doing this for ea
h of the available operations, we
an repla
e the original

Reverse Abstra
tion 8simulator with one that runs the more eÆ
ient versions. This simulator is equivalent to the naiveversion, but
onsiderably more eÆ
ient.75 Con
lusionsWe have demonstrated an approa
h to \retro�tting" an existing low-level spe
i�
ation with abstra
-tions. On analogy with reverse engineering, we
all this reverse abstra
tion. Reverse abstra
tionis a potentially valuable tool for rendering a
omplex low-level spe
i�
ation more intelligible andmore amenable to formal analysis. Moreover, even a spe
i�
ation that was designed for eÆ
ientexe
ution may have ineÆ
ien
ies that are hidden by
omplexity. This be
ame apparent in oure�orts to apply reverse abstra
tion to the Ro
kwell Collins AAMP7 formal pro
essor spe
i�
ation.Our reverse abstra
tion pro
ess is not ideal. It requires
onsiderable low level e�ort and ingenuity.Perhaps a better solution would have been to repla
e the original model with a more abstra
tversion. Reverse abstra
tion might be viewed as a �rst step to identifying what su
h a model mightlook like.This e�ort validates the importan
e of abstra
tion to manage
omplexity and to fa
ilitate proof.But it also suggests that it is possible in some
ases to introdu
e abstra
tion into an existingspe
i�
ation. It is unlikely that there are many large formal spe
i�
ations that will require reverseabstra
tion. Still, it
ould prove to be a valuable addition to the spe
i�er's toolbox.Referen
es[1℄ R. Boyer and J Moore. Single-threaded obje
ts in ACL2. In Pro
eedings of Pra
ti
al Aspe
tsof De
larative Langauges, 2002, pages 9{27, 2002.[2℄ M. Kaufmann, P. Manolios, and J Moore. Computer-Aided Reasoning: An Approa
h. KluwerA
ademi
 Press, Boston, 2000.[3℄ Matthew Wilding, David Greve, and David Hardin. EÆ
ient simulation of formal pro
essormodels. Formal Methods in System Design, 18(3):233{248, May 2001.[4℄ William D. Young and William R. Bevier. Developing an abstra
t separation kernel via su

es-sive re�nement. Te
hni
al report 109, Computational Logi
, In
., May 1995.
7The insertion of abstra
tion fun
tions in pla
e of primitive update and a

essor fun
tions may introdu
e somefun
tion
all overhead. However, most of our abstra
tion fun
tions are simple, non-re
ursive fun
tions and
ould berepla
ed by in-line
ode.

