
Abbreviated Output for Input in ACL2: An Implementation
Case Study

Matt Kaufmann
Dept. of Computer Sciences,
University of Texas at Austin

kaufmann@cs.utexas.edu

ABSTRACT
ACL2 has long provided a way to print expressions in an ab-
breviated manner, where information about hidden subex-
pressions is lost. We present a new ACL2 feature that allows
the missing subexpressions to be recovered. One purpose of
this paper is to motivate and explain the new feature. But
the main focus is on the design and implementation of this
feature, as a case study to give a sense of the process of
improving ACL2, especially to enhance its support for user
interaction.

Categories and Subject Descriptors
D.1 [Programming Techniques]: Applicative (Functional)
Programming; D.2.2 [Design Tools and Techniques]: User
interfaces; D.2.3 [Coding Tools and Techniques]: Pretty
printers; D.2.5 [Testing and Debugging]: Debugging aids

General Terms
Algorithms, Design, Documentation, Human Factors, Veri-
fication

Keywords
ACL2, iprinting, pretty-printing, debugging

1. INTRODUCTION
Bob Boyer’s pretty-printing algorithm [1], which is used by
ACL2, was used by the earliest theorem prover written by
Boyer and J Moore [3] and by their other provers [4, 5],
up through ACL2 [6]. This algorithm was extended very
early in ACL2’s development (when Boyer and Moore were
solely responsible for ACL2) by allowing for evisceration: the
replacement of sub-objects by small tokens before printing,
in a manner analogous to what is supported by Common
Lisp [9]. For example, (A ((B C) D) E F G) is printed as
(A (# D) E ...) if the print-level is 2 and the print-length
is 3. Clearly the latter cannot be read back in, so if for
example it is printed as the result of an evaluation, then the
elided subexpressions cannot be recovered from the output.

Some recent applications of ACL2 have trafficked in very
large structures, in particular with the HONS/memoization
extension of ACL2 [2]. Users have referred to some such ob-
jects as “galactic”, and have had to interrupt ACL2 because
the objects were too large to print. These applications have
made clear the importance of this abbreviation mechanism.
It is increasingly desirable to set up an ACL2 environment
where evisceration is done routinely and yet eviscerated out-
put may be inspected without loss of information. That
ability to inspect eviscerated output is an example of the
evolution of ACL2’s support for user interaction in increas-
ingly demanding industrial applications.

We present a new ACL2 feature, fleshing out an idea floated
by J Moore, that permits eviscerated output to be read back
in. The above example might thus be printed as

(A (#@1# D) E . #@2#)

and ACL2 can read this form back in by looking up indices
1 and 2 in a global structure that provides the values of
the elided subexpressions. We call the new feature iprinting
to suggest “interactive printing” or, thinking of “#@i#”, to
suggest “i printing” or “index printing”, i being an iprint
index into a global structure containing elided values.1 We
call each such ‘#@i#’ an iprint token.

The larger goal of this paper is to provide a sense of what
goes into adding new interactive features to ACL2. We de-
scribe significant design and implementation challenges (and
their solutions) in adding iprinting to ACL2. These chal-
lenges include choosing and managing relevant data struc-
tures, including ACL2 arrays, and maintaining suitable in-
variants; reclaiming storage; defining when an iprint token
is legal input and providing an appropriate error message
when it is not; reacting suitably to interrupts and “worm-
hole” (brr) printing; and avoiding unsoundness caused by
the contextual nature of iprinting. We also discuss the de-
sign and implementation of utilities for controlling the use
of iprinting. Our hope is that as a by-product of this view
into the ACL2 development process, the ACL2 community
will find some practical ACL2 programming ideas.

Throughout this paper we will quote from the ACL2 doc-
umentation, which we may refer to by: “:DOC name-of-

1We hope that this explanation, together with the fact that
the ‘p’ in “iprint” is not capitalized, will earn us forgiveness
for using the trendy “i” prefix.

topic.” In each case, the documentation is taken (with
minor reformatting) from a development version of ACL2
preceding the release of Version 3.5. We may also refer
to ACL2 documentation topics simply by underlining text.
The reader is invited to look at ACL2 Version 3.5 or later [8]
for the most recent documentation [7].

The next section describes iprinting at the user level. The
reader interested only in using iprinting can stop there (or in-
deed, can just go to the ACL2 documentation topic set-iprint
and skip this paper). We then discuss the design of iprinting,
followed by a discussion of some implementation challenges.
Of course, there is significant overlap between what might
be identified as design or implementation, but the design
section focuses on high-level organizational considerations
while the implementation section focuses on lower-level is-
sues that needed to be managed. We conclude with possible
future work and some reflections.

2. IPRINTING AT THE USER LEVEL
ACL2 printing routines use a so-called evisc-tuple to spec-
ify which subexpressions are to be elided. The following
explanation of evisc-tuples from :DOC evisc-tuple suffices
for our purposes. (See :DOC fmt for a discussion of ACL2
formatted printing in general, including fms.)

The following example illustrates the use of an
evisc-tuple that limits the print-level to 3 — only
three descents into list structures are permitted
before replacing a subexpression by ‘#’ — and
limits the print-length to 4 — only the first four
elements of any list structure will be printed be-
fore replacing its tail by ‘...’.

ACL2 !>

(fms "~x0~%"

(list (cons #\0 ’((a b ((c d))

e f g)

u v w x y)))

standard-co

state

(evisc-tuple 3 4 nil nil))

((A B (#) E ...) U V W ...)

<state>

ACL2 !>

Notice that it is impossible to read the printed
value back into ACL2, since there is no way for
the ACL2 reader to interpret ‘#’ or ‘...’. To
solve this problem, see :DOC set-iprint.

The new command set-iprint is used to enable iprint-
ing, so that eviscerated forms can be read back in. When
set-iprint is called with value t or nil, the only state
change is that subsequent evisceration uses or does not use
iprinting. There is no change in the interpretation of existing
iprint tokens.

The following log shows how the tokens ‘#’ and ‘...’ are
replaced by iprint tokens ‘#@i#’. It also shows how those
tokens can then be read back in: the ACL2 reader replaces

‘#@i#’ by the subexpression that was hidden when ‘#@i#’
was printed.

ACL2 !>(set-iprint t)

ACL2 Observation in SET-IPRINT: Iprinting has

been enabled.

ACL2 !>

(fms "~x0~%"

(list (cons #\0 ’((a b ((c d))

e f g)

u v w x y 1 2 3 4 5)))

standard-co

state

(evisc-tuple 3 4 nil nil))

((A B (#@1#) E . #@2#) U V W . #@3#)

<state>

ACL2 !>’#@1#

(C D)

ACL2 !>’((A B (#@1#) E . #@2#) U V W . #@3#)

((A B ((C D)) E F G)

U V W X Y 1 2 3 4 5)

ACL2 !>

Notice that when ACL2 prints the value of the last (quoted)
form above, it does so in full because no global evisceration
has been specified; only the above call of fms has specified
an evisc-tuple. The utility set-evisc-tuple has been in-
troduced concurrently with the introduction of iprinting, to
provide a single interface for controlling ACL2 printing, both
for evaluation results and in other settings such as proof out-
put and errors. The keyword :ld in the following input form
illustrates setting the ld-evisc-tuple, sometimes called the
:LD evisc-tuple, which is used for printing results as shown.

ACL2 !>(set-evisc-tuple

(evisc-tuple 3 ; print-level

4 ; print-length

nil ; alist

nil ; hiding-cars

)

:iprint t ; enable iprinting

:sites :ld)

ACL2 Observation in SET-IPRINT: Iprinting has

been enabled.

(:LD)

ACL2 !>’((a b ((c d))

e f g)

u v w x y 1 2 3 4 5)

((A B (#@1#) E . #@2#) U V W . #@3#)

ACL2 !>

It is tempting to quote this result in order to see the missing
subexpressions. But the result is printed with evisceration
again!2

2See Section 5 for a discussion about possible reuse of iprint
tokens.

ACL2 !>’((A B (#@1#) E . #@2#) U V W . #@3#)

((A B (#@4#) E . #@5#) U V W . #@6#)

ACL2 !>

Of course, we can explore by quoting the iprint tokens, as
follows.

ACL2 !>’#@1#

(C D)

ACL2 !>’#@2#

(F G)

ACL2 !>’#@3#

(X Y 1 2 . #@4#)

ACL2 !>

Notice however that the last value printed above still con-
tains an iprint token. We could continue to explore, but for
large expressions this iterative process could be exhausting.

To circumvent this problem, a utility without-evisc has
been introduced concurrently with iprinting. It turns off
evisceration during both evaluation of the form and printing
of the resulting value.

ACL2 !>(without-evisc

’((A B (#@1#) E . #@2#) U V W . #@3#))

((A B ((C D)) E F G)

U V W X Y 1 2 3 4 5)

ACL2 !>

Instead of using without-evisc one can invoke (set-evisc-
-tuple nil) to disable evisceration globally, not just for the
next form. In that case, a better choice might be to invoke
(set-evisc-tuple :default), so that evisceration has its
initial behavior, occurring only in limited cases including
error messages.

Next we discuss the :sites argument of set-evisc-tuple,
shown as :ld in the example above. It can be any of the
four keyword values listed below. These correspond to four
printing contexts, as explained in :DOC set-evisc-tuple

(we omit some details here), where by default, the :ABBREV

context restricts the print-level (to 5) and the print-length
(to 7).

• :TERM — used for printing terms

• :ABBREV — used for printing informational messages
for errors, warnings, and queries

• :LD — used by the ACL2 read-eval-print loop

• :TRACE — used for printing trace output

The :sites argument may evaluate to any of these four
keywords; to :ALL, denoting a list of all four of these key-
words; or to a sublist of that list. This argument need not
be supplied when set-evisc-tuple is called, but then the

user will be queried for its value. The argument :iprint is
sometimes required; see Section 3.3.

Note that set-evisc-tuple can be called without supplying
keyword arguments, though users may be queried to supply
are missing. We explain more about required arguments in
Section 3.3.

We conclude our user-level discussion of iprinting by noting
that eventually, iprinting will “roll over”so that iprint tokens
begin again at ‘#@1#’, then ‘#@2#’, and so on. This feature
is important in order to provide some bounding of memory
usage to store the values of iprint tokens. One might ex-
pect such rollover to occur at each top-level command; but
a call of ld or certify-book, for example, can generate very
large amounts of output. Here we summarize what a user
may find useful to know about when rollover occurs, defer-
ring to later sections lower-level design and implementation
considerations.

Let us refer to the last iprint index as that value of i for
which ‘#@i#’ is the most recently printed iprint token. Then
rollover can occur in either of two ways. The more common
way is likely to be at the top level of the ACL2 read-eval-
print loop, immediately after input is read (and before its
evaluation): if the last iprint index exceeds the iprinting soft
bound, then the next iprint token will be ‘#@1#’. Rollover can
occur in a second way: After printing an object (for example,
a formula during a proof), if the last iprint index exceeds
the iprinting hard bound, then the next iprint token will be
‘#@1#’. A precise description of which iprint tokens can be
read back in after rollover may be found in Section 3.2. In
a nutshell: immediately after rollover occurs, every iprint
index up to and including the last iprint index is available
and remains so until the next rollover, though values are
overwritten as iprint tokens ‘#@1#’, ‘#@2#’, and so on, are
written.

Note that rollover never occurs during a call of fmt or any
other formatted printing function. In particular, the result
printed for evaluation of a top-level form can always be read
back in.

We may change the defaults for the iprinting soft bound
or hard bound, which are 1,000 and 10,000 (respectively),
according to user feedback.

We conclude this section by discussing the introduction of
the utility set-evisc-tuple. The set of global evisc-tuples
has evolved over time, without particularly well-documented
and clear interfaces for setting each of them. This work
on iprinting motivated us to clean that up, providing set-

-evisc-tuple as a single point of interaction to set the
global evisc-tuples. A bonus is that this interface can bring
iprinting to the user’s attention, by requiring either the
:iprint argument or response to an associated query.

3. IPRINTING DESIGN CONSIDERATIONS
Our hope is that the ACL2 user can make effective use of
iprinting by understanding the preceding section and, per-
haps, reading the documentation for topics evisc-tuple,
set-evisc-tuple, set-iprint, and without-evisc. In this
section we discuss some design considerations that support

natural, clearly-documented iprinting behavior.

3.1 Rollover
The default values for the iprinting soft and hard bounds
are deliberately set high, in order to minimize the chance
of reading stale values for iprint tokens. These bounds are
important for managing space, because the values associ-
ated with iprint indices are not garbage collected. The
set-iprint utility allows specification of new iprinting soft
and hard bounds, for example for those want lower bounds
for space-intensive applications,

Why are there both a soft bound and a hard bound? If
there were only a soft bound, then a single command could
use an unbounded amount of storage; imagine a call of
certify-book that generates a large amount of proof out-
put. If there were only a hard bound, then one might be
tempted to set it where we now set the (smaller) soft bound,
so that under normal circumstances only modest storage
would be needed to support iprinting. But that could be
unfortunate, since by the time the user tries to read in an
eviscerated object printed several commands earlier, several
rollovers may have occurred, in which case the iprint indices
would be stale. Note that this explanation shows why we
only check the soft bound at the top level of the ACL2 read-
eval-print loop, rather than at forms read by subsidiary calls
of ld.

3.2 Valid Iprint Indices
When is a positive integer a valid iprint index? And what
happens when there is an attempt to read the iprint token
‘#@i#’ when i is not a valid iprint index?

We focus on the second question first. In a nutshell, the
ACL2 reader causes an error when reading an iprint token
with an invalid index, or indeed any invalid iprint token
starting with ‘#@’. Every character encountered must be a
base-10 digit. We insist on base 10 because iprinting is done
in base 10, as confusion might otherwise arise if the print-
base is changed between the time output is printed and the
time at which it is read back in. If a character other than a
base-10 digit is encountered after ‘#@’ before the terminating
‘#’ character, then the remaining input is flushed in order to
avoid additional but spurious read errors.

So suppose that in the iprint token ‘#@i#’, ‘i’ is a sequence
of base-10 digits, representing a natural number. If this
number is not a legal iprint index, then an error is caused,
and as in the case above, remaining input is flushed.

It remains to say when a natural number is a legal iprint
index. Clearly 0 is illegal as an iprint index, which must
always be at least 1. If there has not yet been a rollover
then the largest legal iprint index is the last iprint index (as
defined above). Otherwise, the largest legal iprint index is
the last iprint index before the most recent rollover.

At one time we considered reading ‘#@i#’ as nil for i denot-
ing a positive integer that is an illegal index. But it seems
much more helpful to the user to see an error in that case,
rather than perhaps proceeding under the mistaken assump-
tion that nothing was wrong.

No matter how much documentation is available, it may still
surprise the user to see an error caused by an out-of-bounds
index. This case is addressed directly in :DOC set-iprint,
and as with many ACL2 error messages, the user is directed
to that topic, for example as follows.

************ ABORTING from raw Lisp ***********

Error: Out-of-bounds index in #@5#.

See :DOC set-iprint.

Remark. The reader may wonder why the error is caused by
raw Lisp. This was convenient given the implementation of
the #@ reader macro; see Section 4.1.

We conclude our discussion of valid iprint indices by con-
sidering the following case: a form is read that contains
iprint tokens ‘#@j#’ and ‘#@k#’ such that k exceeds the last
iprint index but j does not. In such a case, k comes from
before the most recent rollover and j comes from after the
rollover, so the two iprint tokens couldn’t have been stored
while printing the same expression. It was thus tempting
to cause an error in this case. But we decided against that
because the user might want to read a list of forms, some of
which were printed before the last rollover while others were
printed after the last rollover.

We turn now to the general issue of how to acquaint the user
with iprinting in a gentle way.

3.3 Transitioning the User to Iprinting
A basic goal is to encourage the user to take advantage of
iprinting whenever evisceration is used, while not surpris-
ing the uninitiated user by printing mystifying ‘#@i#’ iprint
tokens.

ACL2 thus starts up with iprinting disabled, but it is de-
sirable for the system to make the user aware of the pos-
sibility of iprinting. It does so when the user attempts to
use set-evisc-tuple: unless iprinting has previously been
enabled, either the keyword argument :iprint must be sup-
plied or the user will be queried on whether to turn on iprint-
ing.

It is tempting therefore to initialize all four global evisc-
tuples to nil, so that the system won’t generate any iprint
tokens until the user calls set-evisc-tuple, which as described
above should help make the user aware of iprinting. How-
ever, it is important that the :ABBREV global evisc-tuple
have modest print-level and print-length, so that large struc-
tures do not overwhelm users during informational mes-
sages. Therefore, when the user sees :ABBREV evisceration
with iprinting disabled, a suggestion appears to see :DOC

set-iprint, as in the following example.

ACL2 !>(defun foo ’(a b c d e f g h i))

ACL2 Error in (DEFUN FOO ...): A definition

must be given three or more arguments, but

(FOO ’(A B C D E F G ...)) has length only 2.

(See :DOC set-iprint to be able to see elided

values in this message.)

We have employed user interaction as one way to bring
awareness of iprinting, as discussed above in the cases of
set-evisc-tuple and informational messages (such as er-
ror messages). A second way was through providing abun-
dant documentation. To that end we have written new
documentation topics, mentioned the new capability in the
release notes (note-3-5), and added well-placed hyperlinks
that point to :DOC set-iprint in the documentation for
evisc-tuple, cw-gstack, set-trace-evisc-tuple, set-evisc-tuple,
note-3-5, without-evisc, and proof-checker. Although the
task of writing ACL2 documentation is a time-consuming
activity, it is a critical part of implementation work — in
this case especially so, in order to make users aware of a
new feature.

3.4 A Soundness Consideration
A trip through the ACL2 documentation [7] reveals that
many ACL2 features do not seem connected to automated
reasoning in the classical sense. Iprinting is one such fea-
ture. However, as with many pieces of ACL2, even iprinting
has a logical aspect: it can render ACL2 unsound if not
implemented carefully, as we now show.

Consider two ACL2 sessions in which the :LD evisc-tuple has
been set to specify print-level 2 and print-length 3. In the
first session we have

ACL2 !>’(a b c d)

(A B C . #@1#)

ACL2 !>

while in the second, fresh session we have the following.

ACL2 !>’(a b c e)

(A B C . #@1#)

ACL2 !>

Thus, iprint index 1 is bound to (D) in the first session and
to (E) in the second session. Now imagine certifying a book
in the first session containing the following event.

(defthm d-this-time

(equal ’#@1# ’(d))

:rule-classes nil)

Finally, imagine including that book in the second session.
Then because iprint index 1 is bound to ’(E) in the second
session, we have included the theorem (equal ’(D) ’(E)),
which is unsound!

Of course, a reasonable user will probably not deliberately
place an iprint token into a book. But it is easy to make cut-
and-paste errors, and besides, soundness is not conditioned
on the reasonableness of users.

ACL2 therefore disallows the use of iprint tokens during
certify-book. Moreover, ACL2 writes out the certificate
file using source function print-object$, which is not sen-
sitive to iprinting or evisc-tuples. Otherwise, unsoundness
could arise as above by using iprinting when writing out
portcullis commands from the certification world.

In reality, the checksum stored in the certificate would prob-
ably save us from the above soundness problem. However,
it is not appropriate for soundness to rely on the heuristic
guidance of checksums. Moreover, as a practical matter, if
an event form in a book has an iprint token, say because of
cutting and pasting from ACL2 output, it is best to catch
this problem early during certify-book rather than to en-
counter numerous include-book failures in the future.

As always, it is important to make the error message intel-
ligible. The following example illustrates how this is accom-
plished.

************ ABORTING from raw Lisp ***********
Error: Illegal reader macro during certify-book, #@1#.
See :DOC set-iprint.

We don’t restrict the reading of iprint tokens by include-book
because it’s not necessary. We already disallow such a book
from being certified, and for all we know, a user’s preferred
methodology may be to include uncertified books while do-
ing proof-hacking, cleaning up only after getting more clar-
ity.

3.5 Modifying Existing Source Code
With iprinting, it is no longer necessary to make exceptions
to print some expressions in full that would normally be
abbreviated, say because they are printed as part of an er-
ror message. After all, one can use iprinting so that full
expressions can be recovered when necessary, and as men-
tioned above, this is even suggested by any error message
that eviscerates without iprinting.

For example, ACL2 code for clause-processor rules had in-
cluded nil as an evisc-tuple for error messages, so that il-
legal clause-processor rules could be printed in full. Con-
sider for example the following illegal rule, adapted from file
books/clause-processors/basic-examples.lisp in the ACL2
distribution), but with variable aaaa on the last line of the
formula where a is expected.

(defthm correctness-of-strengthen-cl

(implies

(and (pseudo-term-listp cl)

(alistp a)

(evl (conjoin-clauses

(clauses-result

(strengthen-cl cl term state)))

a))

(evl (disjoin cl) aaaa))

:rule-classes :clause-processor)

Then the error message for that illegal rule now prints the
above formula as follows (with iprinting disabled). Notice
that the subterm (strengthen-cl cl term state) has been
elided in favor of #.

(IMPLIES (AND (PSEUDO-TERM-LISTP CL)
(ALISTP A)
(EVL (CONJOIN-CLAUSES (CLAUSES-RESULT #))

A))
(EVL (DISJOIN CL) AAAA))

Before the introduction of iprinting, the formula would have
been printed in full. That’s harmless in this example, but
imagine if the elided term above had involved a very large
quoted constant, perhaps because it was generated by a
macro rather than directly by the user. Previous versions
of ACL2 printed the formula in full because that was the
only way to see the full formula if necessary. The iprint-
ing design allowed us to eliminate cluttering of ACL2 source
code with evisc tuples while keeping error messages modest
in size, since iprinting provides access to the parts that were
not printed.

4. IPRINTING IMPLEMENTATION CHAL-
LENGES

Programming exercises typically require dealing with chal-
lenges. Here we discuss some of the implementation chal-
lenges we faced with iprinting, to shed light on ACL2 sys-
tem development in particular and on ACL2 programming
in general. For more details on the iprinting implementa-
tion, see the long comment “Essay on Iprinting” in ACL2
source file basis.lisp.

4.1 Modifying the Lisp Reader
A simple way to eviscerate for readability might seem to be
to print something like (@ xi), for example (@ x17), where
@ accesses the value of the indicated state global variable (see
:DOC assign). But this doesn’t work if we quote the printed
expression. For example, suppose that the object (A B) is
stored in state global variable x7, and that evaluation of the
form (quote ((A B) C)) thus results in printing ((@ x17)

C). If then we quote that form and thus submit (quote ((@

x17) C)) for evaluation, the result will be ((@ x17) C), not
((A B) C) as presumably intended. The point here is that
the ACL2 loop’s reader has to be able to access the stored
values even when in the scope of a quote.

ACL2 reads in expressions by employing the reader provided
by the underlying Common Lisp implementation. Fortu-
nately, Common Lisp [9] allows programs to modify the de-
fault behavior of the reader. ACL2 takes advantage of that
capability as follows.

Common Lisp defines the character ‘#’ to be a dispatching
macro character. This causes the reader to call a function
based on the next character read, which for an iprint token
is ‘@’. ACL2 installs the function sharp-atsign-read for
this purpose, as follows.

(set-dispatch-macro-character

#\#

#\@

#’sharp-atsign-read)

The raw Lisp function sharp-atsign-read then reads from
the current input stream and returns an object. In particu-
lar, it collects base-10 digits into an iprint index and return
the object that corresponds to this index, namely the ob-
ject stored when the iprint token with that index was last
printed.

The discussion above leaves open just how the iprint index
is checked to be in range, as specified in Section 3.2. In
fact this is done quite efficiently using an ACL2 array, as we
describe below.

4.2 Obtaining Efficient Access Using an Ar-
ray

ACL2 arrays permit constant-time access in an applicative
setting. We use a 1-dimensional ACL2 array, (@ iprint-ar),
to store the association of iprint indices with values. An
association list might well be fine in most cases, but scala-
bility is a fundamental design goal for ACL2, which ideally
provides good support for applications that read in large
expressions with many iprint tokens. It may have been yet
a bit more efficient to use single-threaded objects (stobjs),
but that benefit seemed insignificant balanced against the
possibility that stobjs might require significantly more pro-
gramming effort. The main advantage of stobjs would be
to avoid a few conses during printing, which seems minor
compared to the cost of printing.

A nice benefit of using an array is a constant-time legality
check when reading an iprint token, using a combination of
the value at index 0 and the :DEFAULT field of the header
of iprint-ar. For the :DEFAULT field we store nil initially
and then, after the first rollover, the last iprint index just
before the most recent rollover. At index 0 we store the last
iprint index (initially, 0). The following code implements
the legality check.

(defun iprint-ar-illegal-index (index state)
(declare (xargs :guard

(and (natp index)
(state-p state))))

(or (zp index)
(let* ((iprint-ar (f-get-global ’iprint-ar

state))
(bound (default ’iprint-ar iprint-ar)))

(if (null bound)
(> index (iprint-last-index* iprint-ar))

(> index bound)))))

Another side benefit of using an array is that it provides
constant-time access to whether or not iprinting is enabled,
avoiding the introduction of an additional state global vari-
able for that purpose. If the value at index 0 is a number
then iprinting is enabled and that value is the last iprint in-
dex (initially 0). Otherwise that value is the one-element list
containing the last iprint index, and iprinting is disabled.

We conclude with a discussion of the maintenance of fast
access for the iprint-ar. The basic idea is to compress the

array initially (see :DOC compress1) and then update the
array using aset1 or compress1. But additional attention
is necessary.

First, there is some delicate maintenance of an invariant to
ensure that the iprint-ar never exceeds its maximum-length.
Details may be found in the ACL2 source code, specifically
the “Essay on Iprinting” and in comments in the definition
of function rollover-iprint-ar.

Second, in order to maintain fast access we need to consider
user interrupts (control-C). We have organized the code so
that rather than updating the global iprint-ar every time
a new iprint index is associated with a hidden expression,
instead all such pending updates are collected into an alist
during printing. At the conclusion of printing it is very fast
to do all the updates with aset1, or instead at rollover with
a call of compress1, so that an interrupt is very unlikely
to break into the middle of that process. We have con-
sidered disabling interrupts during that process, but that
seems cumbersome and unnecessary since in the worst case,
we have slow array accesses rather than unsoundness. And
sanity can be restored in the very unlikely case that fast ac-
cess fails, because a slow-array-warning will appear and the
user can then re-initialize iprinting by calling set-iprint

with argument :RESET or :RESET-ENABLE.

Finally we need to make sure that we have fast access af-
ter returning from a so-called “wormhole”, such as the one
that implements the break-rewrite loop. Fortunately ACL2
has a function already responsible for undoing the effects
of wormholes, which for example is responsible for com-
pressing the global “enabled-structure” (in support of the
current-theory) when returning from a wormhole. It was
reasonably straightforward to add a similar call of compress1

for the global iprint-ar in that same function (named push-

-wormhole-undo-formi, in ACL2 source file axioms.lisp).

4.3 Without-evisc
The implementation of without-evisc (see Section 2) pre-
sented a technical challenge. This section discusses that
challenge at a necessarily technical level, and may be skipped
by those unfamiliar with, and uninterested in, ACL2 imple-
mentation methods.

ACL2 implements three of the four evisc-tuples — :LD, :TERM,
and :ABBREV — using state global variables. The :TRACE

evisc-tuple has been handled quite differently, and we chose
not to reconsider its design; it is ignored by without-evisc.
So it may appear that we can easily implement without-evisc
by using the ACL2 utility state-global-let* to bind the
above three state globals to nil, say:

(defmacro without-evisc (form)

‘(state-global-let* ((ld-evisc-tuple nil)

(term-evisc-tuple nil)

(abbrev-evisc-tuple nil))

,form))

A fundamental problem is that state-global-let* requires
its second argument to evaluate to an error-triple of the

form (mv erp val state). So for example, if the given form
evaluates to an ordinary value, state-global-let* cannot
be used as above. A rather complicated workaround may
be to use the ACL2 evaluator, trans-eval, which always
returns an error triple specifying both the returned result
and that result’s output signature (which determines multi-
ple values and stobjs). That leaves the problem of printing
that result in the case of stobjs, but ACL2 source function
replace-stobjs should be useful in solving that problem.

However, there is a second fundamental problem: the re-
sult of evaluating a top-level form is printed using the :LD

evisc-tuple. So the above approach may avoid evisceration
caused by printing during evaluation, for example during
proof output, but will not avoid evisceration in printing the
final result, which can occur if there is a non-trivial :LD

evisc-tuple.

We chose therefore to implement without-evisc using a call
of ld. The enclosing call of er-progn, below, avoids printing
the :EOF returned by the call of ld (see :DOC ld).

(defmacro without-evisc (form)

‘(without-evisc-fn ’,form state))

(defun without-evisc-fn (form state)

(state-global-let*

((abbrev-evisc-tuple

nil

set-abbrev-evisc-tuple-state)

(term-evisc-tuple

nil

set-term-evisc-tuple-state))

(er-progn (ld (list form)

:ld-verbose nil

:ld-prompt nil

:ld-evisc-tuple nil)

(value :invisible))))

Here, set-abbrev-evisc-tuple-state and set-term-evisc-

-tuple-state are versions of functions set-abbrev-evisc-

-tuple and set-term-evisc-tuple that return state, and
those two functions simply invoke set-evisc-tuple with
:sites :ABBREV and :TERM.

By using ld values nil for keyword arguments :ld-verbose
and :ld-prompt, and by returning (value :invisible), noise
is avoided and all that is seen is the result of evaluating the
given form — just as the user presumably intended to see.

4.4 Protecting the ACL2 State
ACL2 provides a notion of untouchable functions and vari-
ables, which are available only to the implementation: un-
touchable functions may not be called by the user, and un-
touchable variables may not be set directly by the user. This
mechanism has proved useful in protecting the system from
corruption by the user.

The four global evisc-tuples can be modified with the utility
set-evisc-tuple, described above. This utility checks that
the proposed evisc-tuple has an acceptable shape. The im-

plementation uses lower-level functions to install the evisc-
tuple into the ACL2 state. Those lower-level functions are
declared untouchable so that users cannot subvert the ac-
ceptability checks. Similarly, corresponding state global vari-
ables are declared untouchable so that they cannot be set
directly, but rather, only through appropriate interfaces like
set-evisc-tuple.

Another kind of state protection is in place to support the
make-event utility. The ACL2 implementation uses a con-
stant, *protected-system-state-globals*, to restore built-
in state global variables after make-event expansion (which
is somewhat similar to macroexpansion). However, this con-
stant excludes state global variables that the user might ap-
propriately want to modify permanently during make-event

expansion. We have added the global evisc-tuples as well as
the iprint-ar and corresponding variables holding the soft
and hard bounds, so that make-event expansion can be used
to modify these — using the approved interfaces, of course.

4.5 Dealing with Troublesome Source Code
ACL2 has a complex mechanism for reporting guard viola-
tions. Part of that mechanism is a function, ev-fncall-

-guard-er-msg, that creates a suitable error message. That
function, which uses a hardwired evisc-tuple with print-level
3 and print-length 4, presented a problem for our goal of us-
ing the :ABBREV evisc-tuple to print error messages, mainly
because of its own subtle tricks with evisc-tuples in order to
deal properly with stobjs.

Fortunately, ACL2 already has a utility that permits the
user to get full information on guard violations: print-gv.
So it was easy to decide to avoid the labor-intensive work of
modifying the definition of ev-fncall-guard-er-msg.

Another source function, print-ldd-full-or-sketch, also
uses a hardwired evisc-tuple, this time with print-level 2 and
print-length 3. This function supports history query utilities
such as :pbt and :pcb. ACL2 users have not complained to

the implementers (as best we recall) about the evisceration
used by such utilities, so we decided to leave their function-
ality unchanged.3

5. FUTURE WORK
We have identified a few places where additional work might
improve the implementation of iprinting.

One possible enhancement would be to arrange to use the
same iprint token when the same value is encountered. Con-
sider the following example.

ACL2 !>’(a (((b))) c d e)

(A (#@7#) C . #@8#)

ACL2 !>’(A (#@7#) C . #@8#)

(A (#@9#) C . #@10#)

ACL2 !>

Under the enhancement we imagine, the second result would
print the same as the first. The question quickly arises:

3One referee has since made such a complaint; we might
reconsider that decision.

What do we mean by the same value? A quick test would
be to use eq, but calling it on list values such as those above
would represent a guard violation, and might not give the
notion of “same” that the user expects. Using a full equality
test might be slow, though that problem essentially disap-
pears in the “HONS” experimental extension of ACL2 [2]. If
such an extension is considered, it will be important to think
carefully about “stale” values. For example, suppose we are
about to roll over and we encounter a value that is associ-
ated with an iprint index that is on the verge of becoming
illegal. Do we really want to re-use that iprint index?

Another enhancement pertains to an efficiency hack we use,
to avoid creating more than one copy of the same iprint
token string in most cases. We build an ACL2 array whose
length is the default iprinting hard bound, associating index
i with the string "#@i#". To save time, we admitted the
necessary support functions in :program mode, even though
we put them in source file axioms.lisp where most functions
are in :logic mode. (We had to put them in a source file
processed before the file where they are called in creating
the ACL2 array constant, so that they would be compiled,
thus eliminating tail recursion and avoiding stack overflow.)
A nice exercise is to put these functions in :logic mode
with guards verified.

(defun make-sharp-atsign (i)
(declare (xargs :guard (natp i)

:mode :program))
(concatenate ’string

"#@"
(coerce (explode-nonnegative-integer

i 10 nil)
’string)

"#"))

(defun sharp-atsign-alist (i acc)
(declare (xargs :guard (natp i) :mode :program))
(cond ((zp i) acc)

(t (sharp-atsign-alist
(1- i)
(acons i (make-sharp-atsign i) acc)))))

Finally, note that the proof-checker interactive loop uses
the :TERM evisc-tuple to do nearly all its printing. This
is a deliberate decision, since it presents a simple story and
avoids a proliferation of global evisc-tuples. Indeed, there
was a fifth global evisc-tuple, brr-term-evisc-tuple, that
has been eliminated in the name of simplicity. However, it
might be better for the proof-checker to have its own evisc-
tuple, or even more than one: say, one for terms and one
for everything else, such as commands. As is often the case,
such a change is likely to occur only if driven by user feed-
back.

6. CONCLUSION
ACL2 now has an iprinting capability, which allows the ab-
breviation of large objects during printing in a manner that
allows the user to read those objects back in. This capability
exemplifies the evolution of ACL2 to support user interac-
tion in ever more demanding applications.

This paper illustrates the care exercised when adding a new
feature to ACL2:

• We addressed interaction of the new feature with ex-
isting capabilities, such as soundness implications from
interaction with certify-book (Section 3.4), and such

as interaction with make-event (Section 4.4).

• We considered efficiency and scalability, in particular
by using arrays rather than alists (Section 4.2) and by
implementing rollover (Section 2).

• We took care that user interaction be natural with the
new feature. In the case of rollover, for example, both
hard and soft bounds were provided so that rollover
would occur appropriately according to the amount of
intermediate output (like proof output), not merely re-
sult output, and where the soft bound is applied only
at the top level of ld (Section 3.1). We also consid-
ered interrupts (Section 4.2), handling of illegal indices
(Section 3.2), and other details that together are in-
tended to minimize user frustration.

• We updated documentation, along with error and warn-
ing messages, to advertise and clarify the new feature.
As usual, writing documentation and messages took
much longer than expected!

• We met several implementation challenges (Section 4),
while carefully considering how best to prioritize avail-
able time (Section 4.5).

ACL2 is much more than a reasoning engine, to an extent
well beyond most or all other mechanized theorem provers.
It is a highly interactive system, providing a programming
environment with a read-eval-print loop that supports large
objects and configurable I/O, and with“administrative”func-
tions including make-event and the management of book
certificates. The addition of new features to ACL2 thus
requires attention to issues as described in the bulleted list
above: harmony with existing ACL2 features (especially, but
not solely, with respect to soundness); efficiency and scala-
bility; user interaction; documentation, including error and
warning messages; and prioritization.

Acknowledgements
We thank J Moore for the idea of abbreviating ACL2 output
to be read back in by printing natural numbers as place-
holders, and for helpful remarks on drafts of this paper.
More generally, we thank J for being a terrific collabora-
tor in ACL2 development. We also thank Bob Boyer and
Warren A. Hunt, Jr. for their encouragement in developing
iprinting. We are grateful to Sandip Ray for helpful discus-
sions about this paper, whose existence is due in part to his
encouragement to write it. We also much appreciate much
useful feedback from the referees.

This work was supported by ForrestHunt, Inc. and Warren
A. Hunt, Jr.; by DARPA and the National Science Founda-
tion under Grant No. CNS-0429591; and by the National
Science Foundation under Grant No. EIA-0303609.

7. REFERENCES
[1] R. S. Boyer. Pretty-print, 1973. Department of

Computational Logic, School of Artificial Intelligence,
University of Edinburgh, Memo No 64; http:
//www.cs.utexas.edu/~boyer/pretty-print.pdf.

[2] R. S. Boyer and W. A. Hunt, Jr. Function memoization
and unique object representation for ACL2 functions.
In ACL2 ’06: Proceedings of the sixth international
workshop on the ACL2 theorem prover and its
applications, pages 81–89, New York, NY, USA, 2006.
ACM.

[3] R. S. Boyer and J S. Moore. Proving theorems about
pure lisp functions. JACM, 22(1):129–144, 1975.

[4] R. S. Boyer and J S. Moore. A Computational Logic.
Academic Press, New York, 1979.

[5] R. S. Boyer and J S. Moore. A Computational Logic
Handbook, Second Edition. Academic Press, New York,
1997.

[6] M. Kaufmann, P. Manolios, and J S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Press, Boston, MA., 2000.

[7] M. Kaufmann and J S. Moore. ACL2 User’s Manual,
http://www.cs.utexas.edu/users/moore/acl2/

current/acl2-doc.html#User’s-Manual.

[8] M. Kaufmann and J S. Moore. The ACL2 home page.
In
http: // www. cs. utexas. edu/ users/ moore/ acl2/ .
Dept. of Computer Sciences, University of Texas at
Austin, 2009.

[9] G. L. Steele, Jr. Common Lisp The Language, Second
Edition. Digital Press, 30 North Avenue, Burlington,
MA. 01803, 1990.

