Second-Order
Functions and Theorems
in ACL2

Alessandro Coglio

-~ Kestrel

| S—— S 2

v Institute

2
"ACL2 Workshop 2015

If ACL2 were second-order...

... we could define second-order functions:

function parameter
? individual parameter
(defun map (f 1)
(cond ((atom 1) nil)

(t (cons (f (car 1)) (map f (cdr 1))))))

\ f is used as a function

If ACL2 were second-order...

(defun map (f 1)
(cond ((atom 1) nitl)
(t (cons (f (car 1)) (map f (cdr 1))))))

... we could prove second-order theorems:

universally quantified over f and L

(defthm len-of-map
(equal (len (map f 1)) (len 1))) «’///

If ACL2 were second-order...

(defun map (f 1)
(cond ((atom 1) nitl)
(t (cons (f (car 1)) (map f (cdr 1))))))

(defthm len-of-map
(equal (len (map f 1)) (len 1)))

... we could apply second-order functions:

(defun rev-fix—cons (a x)
(cons a (map fix (rev x))))

K map is applied to the function Tix

If ACL2 were second-order...

(defun map (f 1)
(cond ((atom 1) nitl)
(t (cons (f (car 1)) (map f (cdr 1))))))

(defthm len-of-map
(equal (len (map f 1)) (len 1))) ..

(defun rev-fix-cons (a x)
(cons a (map fix (rev x))))

... we could use second-order theorems:

proved using (:rewrite len-of-map)

(defthm len-of-rev-fix-cons «///
(equal (len (rev-fix-cons a x)) (1+ (len x))))

With the SOFT (‘Second-Order Functions and Theorems’) tool...

.. we can define second-order functions:

we must declare function variables

(defunvar f (%) => %) «—

we must use defun2 (2d-order version of defun)
/ we must separate function and individual parameters
(defun2 map (f) (1)

(cond ((atom 1) nil)
(t (cons (f (car 1)) (map (cdr 1))))))

\ we must omit

function parameters
in 2"-order function calls

With the SOFT (‘Second-Order Functions and Theorems’) tool...

... we can define second-order functions:

(defunvar ?f (%) => %)

(defun2 map[?f] (?f) ()
(cond ((atom 1) nil)
(t (cons (?f (car 1)) (map[?f] (cdr 1))))))

\ “restores” omitted

function parameter

possible naming conventions (not enforced by SOFT):
e start function variable names with ?
* include function parameters in names of 2"d-order functions

With the SOFT (‘Second-Order Functions and Theorems’) tool...
(defunvar ?f (x) => %)

(defun2 map[?f] (?f) (
(cond ((atom 1) nll)
(t (cons (?f (

L)

car 1)) (map[?f] (cdr 1))))))

... we can prove second-order theorems:

~

(defthm len-of-map[?f]
(equal (len (map[?f] 1)) (1len 1)))*\\

a regular defthm, whose formula references 7 f

universally quantified over ?f and L

With the SOFT (‘Second-Order Functions and Theorems’) tool...
(defunvar ?f (x) => %)

(defun2 map[?f] (?f) (1)
(cond ((atom 1) nil)
(t (cons (?f (car 1)) (map[?f] (cdr 1))))))

(defthm len-of-map[?f]
(equal (len (map[?f] 1)) (len 1)))

... we can apply second-order functions:

named application of map to fix (an instance of map)

(defun-inst map[fix]<«///
(map[?f] (?f . fix))) binding of actual function parameters

\/to formal function parameters, by name

(defun rev-fix—cons (a x)
(cons a (map[fix] (rev x))))

-

\ we must create an instance of map -+ '

With the SOFT (‘Second-Order Functions and Theorems’) tool...
(defunvar ?f (x) => %)

(defun2 map[?f] (?f) (1)
(cond ((atom 1) nil)
(t (cons (?f (car 1)) (map[?f] (cdr 1))))))

(defthm len-of-map[?f]
(equal (len (map[?f] 1)) (len 1))) ...

(defun-inst map[fix]
(map[?f] (?f . fix)))

(defun rev-fix-cons (a x)
(cons a (map[fix] (rev x))))

... wWe can use second-order theorems: , :
named instance of len—of-map [?f]

(defthm-inst len—of—map[fix]*,({
(len-of-map[?f] (?f . fix))) o

function variable substitution -/ proved using (: rewrite‘len—of—map [fix])

(defthm len—of-rev—fix-cons«—"
(equal (len (rev-fix-cons a x)) (1+ (len x))))

With the SOFT (‘Second-Order Functions and Theorems’) tool...
(defunvar ?f (x) => %)

(defun2 map[?f] (?f) (1)
(cond ((atom 1) nil)
(t (cons (?f (car 1)) (map[?f] (cdr 1))))))

(defthm len-of-map[?f]
(equal (len (map[?f] 1)) (len 1)))

(defun-inst map[fix]
(map[?f] (?f . fix)))

(defun rev-fix-cons (a Xx)
(cons a (map[fix] (rev x))))

(defthm-inst len-of-map[fix]
(len-of-map[?f] (?f . fix)))

(defthm len-of-rev-fix-cons
(equal (len (rev-fix-—cons a x)) (1+ (len x))))

How does this work?

SOFT (‘Second-Order Functions and Theorems’) is an ACL2 library
to mimic second-order functions and theorems in the first-order
logic of ACL2.

It does not extend the ACL2 logic.
It does not introduce unsoundness or inconsistency on its own.

It provides the following macros:

defunvar
defun2
defchoose?
defun-sk2
defun-inst
defthm-inst

Macro to introduce function variables:

/ type (in the sense of Church)

nName
\ A
r N\

(defunvar ?f (% ... %) => %)

Macro to introduce function variables:

(defunvar ?f (% ... %) => %)

expand

l 7T is uninterpreted

(defstub ?2f (*x ... %) => %) «///
(table ...) «\\\

records information about 71

Macro to introduce plain second-order functions:

function parameters
individual parameters
name /
\ r

A A
N [A\

(defun2 sof (?f; ... ?f) (X; «.. X,)
doc decl ... decl body) \

Y

/‘ guard and measure may reference the 77;
same asinadefun

Macro to introduce plain second-order functions:

(defun2 sof (?f; ... ?f,) (xX; ... X,)
doc decl ... decl body)

expand

l 1st-order function

(defun sof (x; ... x,) <_,//

doc decl ... decl body)

(table ...) ‘\

records information about sof

SOFT (‘Second-Order Functions and Theorems’) is an ACL2 library
to mimic second-order functions and theorems in the first-order
logic of ACL2.

It does not extend the ACL2 logic.
It does not introduce unsoundness or inconsistency on its own.

It provides the following macros:

defunvar _ _ _
introduce choice 2"-order functions
defun2 and quantifier 2"%-order functions

defchoose? (2nd-order versions of defchoose and
— defun-sk; analogous to defun?)
defun-sk?2

defun-inst
defthm-1inst

Macro to instantiate second-order functions:

function parameters,

name of the new present iff is 2"-order
function instance \

name of the 2nd-order (defun—-inst f (7f, ... 7f,)
function to instantiate (sof (7¢g, . hy) ... (?g, . h,))
S~

) \. J
EE N Y

keyed options, e.g. to j k instantiation, i.e. map

control guard verification from fur.1ct|on Yarlables
to function variables,

1st-order functions, and
2"d-order functions

Macro to instantiate second-order functions:

(defun-inst f (?f; ... ?f,)

n

(sof (79, « hy) .. (?g, . hy))

" mon)
‘ body, guard, and measure of are :
expand the result of applying the instantiation
l to body, guard, and measure of sof
(defun f ...)
(defchoose f) this involves not only
/ (defun—sk f) replacing 7, with h;, but
one of these, based o also 2"d-order functions
on the macro used (table ...) that depend on 7g; with

to introduce sof \ suitable h,-instances
records information about 1

Macro to instantiate second-order theorems:

name of the new
theorem instance

name of the 2rd-order (defthm—inst thm /

theorem to instantiate ~ (sothm (?g, . hy) ... (?g, . h,))
S~

‘rule-classes cls)
/ instantiation, as

same as in defthm indefun—-inst

Macro to instantiate second-order theorems:

(defthm—inst thm
(sothm (7?9, . hy) ... (7?9, . h,))
:rule-classes cls) B

expand

¢ result of applying instantiation to formula of sothm

(defthm tﬁT—’////

_ , formula replacements of 2"d-order functions
Fh'i functjlonal ‘rule-classes cls in sothm with suitable h;-instances
instance is : .
formula :1nstructions

((:use (:functional-instance sothm
(?g, . hy) ... (?g9, . h) more-pairs))

////——*(:repeat (:then (:use facts) :prove))))

definitions and axioms of the

this proves the constraints _ . ,
h.-instances in more-pairs

generated by more-pairs

SOFT (‘Second-Order Functions and Theorems’) is an ACL2 library
to mimic second-order functions and theorems in the first-order
logic of ACL2.

It does not extend the ACL2 logic.
It does not introduce unsoundness or inconsistency on its own.

It provides the following macros:

defunvar
defun2
defchoose?
defun-sk2
defun-inst
defthm-1inst

SOFT can be used to formalize algebras and similar mathematical
structures in a compositional way, e.g.:

(defun-sk2 semigroup[?op] (?op) ()
(forall (x y z)
(equal (?op (?o0p x y) z) (?0p x (Pop y 2)))))
(defun-sk2 identity[?op] (?op) (id)
(forall x (and (equal (?op id x) x)
(equal (?op x id) x))))

(defun2 monoid[?op] (?op) (id)
(and (semigroup[?opl) (identity[?op] id)

)
(defun-sk2 inverse[?op_?inv] (?op ?inv) (id
(forall x (and (equal (?op x (?inv x)) id
(equal (?op (?inv x) x) id

(defun2 group[?op_?inv] (?op ?inv) (id)
(and (monoid[?op] id) (inverse[?op_?inv] id)))

Unlike encapsulate, algebraic properties are expressed by
predicates, not by axioms attached to the abstract operations.

SOFT can be used to formalize algorithm schemas, e.g.:

cons
/\ N
fa cons‘\\‘
N\
generic folding function ,:” / \ \‘\“-.
on binary trees i ‘b ~C
VoSS
\]

(defun2 fold[?f_?q] (7f ?g) (x)

(cond ((atom x) (?f x))
(t (?g (fold[?f_?g] (car x))
(fold[?f_?g] (cdr x))))))

divide-and-conquer algorithm schema, specialized to binary trees: to solve a
problem on a binary tree, recursively solve the problem on its subtrees and
combine the solutions using 7g; solve the problem on leaves directly using 7

SOFT can be used to formalize algorithm schemas, e.g.:

(defun2 fold[?f _2g] (?f ?g) (x)
(cond ((atom x) (?f x))
(t (?g (fold[?f_?g] (car x))
(fold[?f_?g] (cdr x))))))

(defun-sk2 atom-io[?f_?io] (?f ?io) ()
(forall x (implies (atom x)

(710 x (?f x))))) \\\\

predicate asserting that 7 yields valid solutions
on leaves, w.r.t. an input/output relation 7 io
that relates problems with acceptable solutions

SOFT can be used to formalize algorithm schemas, e.g.:

(defun2 fold[?f _2g] (?f ?g) (x)
(cond ((atom x) (?f x))
(t (?g (fold[?f_?g] (car x))
(fold[?f_?g] (cdr x))))))

(defun-sk2 atom-io[?f_?io] (?f ?io) ()
(forall x (implies (atom x)
(?i0 x (?f x)))))

(defun-sk2 consp-io[?g_7io] (?g ?io) ()
(forall (x yl y2)

(implies (and (consp x)
(?7i0 (car x) y1l)
(?io (cdr x) y2))
(?7i0 x (?g y1 y2)))))

predicate asserting that 7g combines valid solutions on
subtrees into valid solutions on trees, w.r.t. the input/output
relation 710 that relates problems with acceptable solutions

SOFT can be used to formalize algorithm schemas, e.g.:

(defun2 fold[?f_?gl (?f ?g) (x)
(cond ((atom x) (?f x))
(t (?g (fold[?f_?g] (car x))
(fold[?f_?g] (cdr x))))))

(defun-sk2 atom-io[?f_?io] (?f ?io) ()
(forall x (implies (atom x)
(?io0 x (?f x)))))
(defun-sk2 consp-iol[?g_7iol (?g ?io) ()
(forall (x y1 y2)
(implies (and (consp x)
(?io0 (car x) yl)
(?7io0 (cdr x) y2))
(?io0 x (?g y1 y2)))))
(defthm fold-io[?f_?g_7?io] theorem asserting the
(implies (and Eggﬁg;iig;ﬁa?%il;)) correctness of fold[?f_7gl,

. w.r.t. the input/output
(?io x (fold[?f_7?g] x)))) relation ?io that relates

problems with acceptable
solutions

SOFT can be used to formalize algorithm schemas, e.g.:

(defun2 fold[?f_?gl (?f ?g) (x)
(cond ((atom x) (?f x))
(t (?g (fold[?f_?g] (car x))
(fold[?f_?g] (cdr x))))))

(defun-sk2 atom-io[?f_?io] (?f ?io) ()
(forall x (implies (atom x)
(?7i0 x (?f x)))))
(

(defun-sk2 consp-io[?g_?io] (?g ?io) ()
(forall (x y1 y2)
(implies (and (consp x)
(?i0 (car x) yl)
(?7io0 (cdr x) y2))

(?io0 x (?g y1 y2)))))

(defthm fold-io[?f_?g_7?io]
(implies (and (atom-io[?f_?iol)
(consp-io[?g_?io]))
(?i0 x (fold[?f_?g] x))))

Algorithm schemas are useful for program refinement.

SOFT can be used for program refinement.

this :COU|d bke requirements over n > 1 target functions
a defun-sk2 are specified by a 2"d-order predicate

3\ -

(defun2 spec, (?f; ... ?f,) ...

unlike encapsulate, no witnesses goal: solve spec, for 71, ..., ?f,
for the n functions are needed; it is /
the goal of refinement to generate

witnessing implementations

\ inconsistent requirements amount to

spec, being always false, without
introducing inconsistencies; no
defaxiomis used

SOFT can be used for program refinement.

(defun2 spec, (?f; ... ?T,) «u4)

ﬂ the specification is stepwise refined
by a sequence of increasingly
(defun2 spec, (?f; ... ?f,) ...) strong 2"d-order predicates

(defun2 spec, (?f; ... ?f,) ...) >‘/

ﬂ each predicate narrows down
| the possible implementations
or rephrases their description
7 towards their determination

the refinement relation
is logical implication

SOFT can be used for program refinement.
(fq, .., T, is the obtained

(defunz SpeC@ (?fl R ?fn) "o) imp|ementaﬁon of spec,
7 ? »>
(defun2 spec; (?fy ... ?f,) ...) f,, .., T, are executable functions,
ﬂ constructed as part of the
refinement process, along with
(dEfunz SpeCZ (?fl HE E N ?fn) | I B) Specl’ ey Specm

. the sequence ends with a 2"d-order

predicate that provides explicit solutions
f,, .., T, for the target functions

(defun2 spec, (?f; ... 7f,) ()
(and (equal ?f; f;)

/ (equal ?f, f,)))

almost
like this

SOFT can be used for program refinement.

(defun2 spec, (?f; ... ?T,) «u4)

l

(defun2 spec; (?f; ... ?f,) ...)

l

(defun2 spec, (?f; ... ?f,) ...) 1%*-order expression of

ﬂ n f the 2nd-order equality

(defun-sk2 def; (?f,;) ()
(forall args
' (equal (?f,; args)
T[(f;, args))))
(defun2 spec, (?f; ... ?f,) () :
(and (def;)

.
.
.
.
.
.
.
..
.
..
. "

.

(def.)))

SOFT can be used for program refinement.

(defun2 spec, (?f; ... ?T,) «u4)
ﬂ auxiliary target functions may
be introduced along the way

(defun2 spec; (?f; ... ?f,) ...)

(defun2 spec, (?f; ... ?f, ?f 1) «..) /

m
I

(defun2 spec, (?f; ... ?f, ... ?f,,) ()
(and (def,)
(def,)

(def,.,)))

SOFT can be used for program refinement.

(defun2 spec, (?f; ... ?T,) «u4)

l

(defun2 spec; (?f; ... ?f,) ...)

l

(defun2 spec, (?f; ... ?f, ?f 1) «..)

ﬂ this approach to program
refinement is called
‘shallow pop-refinement’
(see paper for details)

(defun2 spec, (?f; ... ?f, ... ?f,,) ()
(and (def,)
(def,)

(def,.,)))

Example of program refinement using SOFT:

(defun leaf (e bt)
(cond ((atom bt) (equal e bt))
(t (or (leaf e (car bt))
(leaf e (cdr bt))))))

(defun-sk io (x vy)
(forall e (iff (member e y)
(and (leaf e x)
(natp e)))))

(defun-sk2 spec[?h] (?h) ()
////’» (forall x (io x (?h x))))

requirements specification \ return a list of all and only

. : the leaves that are naturals
input/output relation , _
(in no particular order and
possibly with duplicates)

Example of program refinement using SOFT:

since the specification involves binary
trees, we use the divide-and-conquer
algorithm schema for binary trees

this refinement step

\, (defun-sk2 SpeC[?h] (7h) () introduces auxiliary
(forall x (io x (?h x)))) target functions; ?h is

determined when 7 f

strict implication; this and 79 are determined
refinement step reduces ﬂ

the set of possible —

implementations A

(defun2 specl[?h_?f_7?gl (?h ?f ?qg)
(and (equal ?h fold[?f_7g])

(forall x (io x (?h x) }‘\

2"d-order equalities
and inlined quantifiers
are artistic licenses
(the real version uses
suitable defun-sk2s)

we constrain ?h to be fold [?f_7g]
for some 7T and 7g

Example of program refinement using SOFT:
(defun-sk2 spec[?h] (?h) ()

(forall x (io x (?h x)))) we use the first conjunct to
ﬂ rewrite the second conjunct
(defun2 specl[?h_?f_?g] (?h ?f ?g) () ¢’/////
(and (equal ?h fold[?f_?gl)
non-strict (forall x (io x (?h x)))))

refinement —
(equivalence) ﬂ

(defun2 spec2[?h_?f_7?g] (?h ?f ?g) ()
(and (equal ?h fold[?f_?gl)
(forall x (io x (fold[?f_?g]l x)))))

Example of program refinement using SOFT:
(defun-sk2 spec[?h] (?h) () ...)

ﬂ we apply the
correctness theorem
(defun2 specl[?h_?f_7gl (?h ?f ?g) () ...) ofthedivide-and-

conquer algorithm
ﬂ schema backwards

(defun2 spec2[?h_?f_?g]l (?h ?f ?g) () *’///
(and (equal ?h fold[?f_?gl)
(forall x (io x (fold[?f_?g] x)))))

(defthm fold-io[?f_?g_?io]
(implies (and (atom-io[?f_?iol)
(consp-io[?g_?iol))
(?i0 x (fold[?f_?g] x))))

correctness theorem of
the divide-and-conquer
algorithm schema

Example of program refinement using SOFT:
(defun-sk2 spec[?h] (?h) () ...)

ﬂ we apply the
correctness theorem

(defun2 specl[?h_?f_7gl (?h ?f ?g) () ...) ofthedivide-and-

ﬂ conquer algorithm
schema backwards

(defun2 spec2[?h_?f_?g] (?h ?f ?g) () *’///
(and (equal ?h fold[?f_?gl)

(forall x (io x (fold[?f_?g] x)))))

/— match —/

(?io x (fold[?f_?gl x)) (io x (fold[?f_?gl x))
ﬂ defthm-inst S ﬂ
(?io . 1io0)
(and (atom-io[?f_?io]) (and (atom—-io[?f _iol)

(consp-io[?g_7iol)) (consp-iol[?g_iol))

Example of program refinement using SOFT:

(defun-sk2 spec[?h] (?h) () ...)

ﬂ we apply the
correctness theorem
(defun2 specl[?h_?f_7gl (?h ?f ?g) () ...) ofthedivide-and-

ﬂ conquer algorithm
schema backwards

(defun2 spec2[?h_?f _?g] (?h ?f ?g) () *’///
(and (equal ?h fold[?f_?gl)
(forall x (io x (fold[?f_?g] x)))))

l

(defun2 spec3[?h_?f_?g] (?h ?f ?g) ()
(and (equal ?h fold[?f_?gl)
(atom-io[?f_iol)
(consp-io[?g_iol)))

Example of program refinement using SOFT:
(defun-sk2 spec[?h] (?h) () ...)

l

(defun2 specl[?h_?f_?g] (?h ?f ?g) () ...)

l

(defun2 spec2[?h_?f_?gl (?h ?f ?g) () ...)

l

(defun2 spec3[?h_?f_7?g] (?h ?f ?g) ()
(and (equal ?h fold[?f_?g])
(atom-io[?f_io])

(consp-io[?g_io]) }'«\\\

these are requirements
specifications for 7T and 7g
that can be stepwise refined
independently

Example of program refinement using SOFT:

(atom-io[?f_iol)

M
M
(equal ?f f) «\\\

for some (defun f ..

.)

Example of program refinement using SOFT:

(atom-io[?f_iol)

m
|

(equal ?f f)

we apply this implication backwards
in the main refinement sequence

Example of program refinement using SOFT:

(defun-sk2 spec[?h] (?h) () ...)

l

(defun2 specl[?h_?f_?g] (?h ?f ?g)

l

(defun2 spec2[?h_?f_?g] (?h ?f ?g)

l

(defun2 spec3[?h_?f_?g] (?h ?f ?g)
(and (equal ?h fold[?f_?gl)
(atom-io[?f_iol)
(consp-iol[?g_iol)))

l

(defun2 spec4[?h_?f_?g] (?h ?f ?g)
(and (equal ?h fold[?f_?gl)
(equal ?f f)
(consp-io[?g_io]l)))

Example of program refinement using SOFT:
(defun-sk2 spec[?h] (?h) () ...)

!

ﬂ we proceed analogously for 7¢

(defun2 spec4[?h_?f_7?g] (?h ?f ?g) ()
(and (equal ?h fold[?f_?g])
(equal ?f f)
(consp-io[?g_iol))) (consp-io[?g_iol)

ﬂ (stepwise)
(equal ?g g)

Example of program refinement using SOFT:
(defun-sk2 spec[?h] (?h) () ...)

I

(defun2 spec4[?h_?f_?g] (?h ?2f ?g) ()
(and (equal ?h fold[?f_?gl)
(equal ?f f)
(consp-io[?g_iol)))

l

(defun2 spec5[?h_?f_?gl (?h ?f ?g) ()
(and (equal ?h fold[?f_?gl)
(equal ?f f)
(equal ?g g)))

Example of program refinement using SOFT:
(defun-sk2 spec[?h] (?h) () ...)

!

we use the second and
third conjuncts to
ﬂ rewrite the first conjunct

(defun2 spec5[?h_?f_?g] (?h ?2f ?g) ()
(and (equal ?h fold[?f_?gl)
(equal ?f f)
(equal ?g g)))

Example of program refinement using SOFT:
(defun-sk2 spec[?h] (?h) () ...)

!

(defun2 spec5[?h_?f_?g] (?h ?2f ?g) ()
(and (equal ?h fold[f_gl)

(equal ?f f)
(equal ?g g))) «\\\\\

(fold[f_gl f, g
is the obtained
implementation

of spec
\ the implementation

witnesses the
consistency of spec

SOFT is available in the ACL2 community books:
tools/soft. lisp
tools/soft—-paper—-examples. lisp

