Android Platform Modeling and
Android App Verification
in the ACL2 Theorem Prover

Eric Smith and Alessandro Coglio
Kestrel Institute

ACL2 Workshop 2015
(paper presented at VSTTE 2015)

Contributions

* Atheorem-proving framework for formal proofs
about Android applications.

* Includes an evolving, formal model of (part of) the
Android platform.

e Case Study: Verification of a simple calculator app

— Based on an app produced by a Red Team for DARPA APAC.
— Proof fails for the malicious / buggy versions.
— Proof succeeds for correct version.

Motivation

Prove functional correctness of Android apps.

Also helps detect “functional malware” Ex:
— give the wrong answer
— stop working at critical moment
— lead a platoon off-course

Malware detection tools are getting good (DARPA APAC)

— Most data exfiltration can be found

But no tool available to find functional malware.
— Not even expressible in most security tools

And manual inspection can miss subtle behaviors

Outcome

* Forincorrect/malicious apps:
— Proof fails.
— Bug or malware often indicated by failed proofs.

* For correct/benign apps:
— Proof gives high assurance proof about app behavior
— Tells us when we're done: All behaviors rigorously checked

Ex: Correct Behavior of the
Calculator App (CalcB)

Formalized as a state machine (def-state-machine).

clear op

1/

N

digit
—>
vallpre vall
INIT =———> [prev_val] [€&———— [vall]
clear

op digit val2
—> val2pre > vall —
€— [vall] op
op op [val2] | digit

digit / OJ\

clear

input ::= digit | op | = | clear
digit::=0]1]12|3|4|5|6|7]8]9
opu=+|-|*|/

clear

[...] is the display

Formal Android model

* We developed a formal model of Android

— Deep embedding of Java Virtual Machine + Android
— Based on our formal JVM model
— Models key Android concepts

 Event-driven

* Model is a formal, executable simulator.

e Reason about the model as it executes the
app's bytecode.

— Proof by symbolic execution (standard technique)
e Use ACL2 rewriter to repeatedly step and simplify

Formal JVM Model

Models most Java bytecode instructions (~200)

JVM state contains: heap, call stack (per thread), static area,
loaded classes, monitor table, interned string table, ...

Executable, formal simulator: Shows the effect of each
instruction on the JVM state

Example (IADD instruction):

(defun execute-IADD (th s)
(modify th s
tpc (+ 1 (pc (top-frame th s)))
:stack (push (bvplus 32 (top (pop (stack (top-frame th s))))
(top (stack (top-frame th s))))
(pop (pop (stack (top-frame th s)))))))

Many details: exceptions, class initialization, string interning

Formal Android Model 1/2

 Models the state of a single running app (currently)
* Android state contains:

JVM state

* the app’s persistent date (heap and static area)
Activity stack
Set of currently-allowed events (e.g., button clicks)
Manifest (from XML)
Layouts (from XML)
Current event

Various indices
* View object (e.g., button) -> event listener
* View name -> resource ID (hex numbers)
* resource ID -> address of View object

API call history (ghost variable)
Event history (ghost variable)

Formal Android Model 2/2

* Event-driven:
— Lifecycle: (:start), (:resume), (:pause),
— GUI: (:click “myButton”)

* Event dispatch:

— Check if currently allowed (listener registered, no stop before start,
etc.)

— Look up relevant object (e.g., button or activity)
— Set current event
— Dispatch to handler : onClick (), onResume(), ...
» Execute code
» Use models for super . XXX() API calls
» Code’s effects get recorded in the heap and static area
— Record API calls made

APl Modeling

Incomplete but growing (driven by the apps we're verifying).

Sometimes use the code (if available and not too complex):
— java.lang.Enum.equals()

— android.app.Activity.setTitle()

Sometimes just record and skip

— android.telephony.SmsManager.sendTextMessage ()
— java.lang.Object.registerNatives|()

Special handling (fundamental to our model):

— setOnClickListener ()

— setContentView()

— findViewbyId()

— onStart(), onResume(),

Common Proof Methodology

Formulate Correctness
* Ex: App matches abstract state machine (state includes history)
e Ex: Only certain API calls made (don’t send text messages)

Strengthen to an Invariant:

e Structural invariants: all allowed events, active event listeners, Enum
classes, lots of boilerplate (we are automating) ...

* App-specific invariants (e.g., counter never negative)

Symbolic execution (for each allowed event)
e start with an arbitrary state
e assume the invariant
* use symbolic execution (rewriting) to show that running the event handler
preserves the invariant
Top-Level Induction for the Event Loop
* Since each allowed event preserves the invariant,

* By induction, conclude that the invariant is preserved for all event
sequences.

Automation

Semi-automatic
Proof for each calculator button is 1 line. Ex:

(def-event-proof (:click "btnPlus") CalcBSimplified6-invariant)

Most work is in formulating the invariant

— attempt proof and strengthen invariant as needed

We see lots of things to automate!

Example: Malicious Calculator App

* Malicious Calc:
— based on an app from a Red Team

— when number of chained operations is 3, return
88888888

— this is functional malware

* Attempted proof fails

— Failed proof shows that the case of interest is when
numOQOps = 3
— Prover is trying to show that 88888888 is the correct
running result
* Not true and reveals the malware!

Example: Benign Calculator App

Found 2 bugs in “benign” app:

1. Integer overflow in numOps

— of theoretical interest only
— after 2731 chained operations, numOps wraps around and
becomes negative

— display no longer updated until it wraps again

2. Fixed it and tried to prove. But one more issue...

— Numeric result in display not always updated properly.

— E.g. starting the calculator (shows “0”) and entering “—12 3 4
+” shows “1234” on the display instead of “-1234”,

— Corner case eluded informal manual inspection.

Final Proof

e After fixing these two issues, we proved that
our calculator app matches the state machine.

* Guarantees that the calculator display always
shows the correct numeric result
— no matter what buttons the user presses
— no matter what order the buttons are pressed

 We also proved that the calculator only makes
allowed API calls (listed in the specification)

Related Work

To our knowledge, our formal Android model and app
proofs are the most detailed to date.

Lots of related work (see the paper)

Things that distinguish our approach:

— Emphasis on Android (not general program verification)

— Detailed model (not a security/permission abstraction, not a
type system)

— User-level view (vs. checking JML method contracts)
— Mechanized (not pencil-and-paper)

— Embedded in a theorem prover (rich logic)

Most similar:

— Payet and Spoto: Dalvik model + some APls, app proofs soon

— SymDroid (Jeon, Micinski, Foster): symbolic executor + SMT
solver

Future Work

* Improve JVM model
— floating point, Unicode

* Improve Android model
— more types of events
— more API calls.
— track arguments to API calls (URLs visited, phone numbers)
— Add support for multi-threading, background processes
— Extend to multi-app system (collusion, etc.)
* Will need to model Intents

 Handle loops in event handlers
— lift into logic: turn loops into recursive functions
— cutpoint proofs of loop invariants

Lessons Learned

To model Android you have to think like Android

Hmmm... To make this work, the platform must keep a map from resource IDs to addresses of View objects.
Okay, that has to be part of our state!

Failed proofs reveals bugs or suggest invariants
— case that triggers the bug

or impossible case (improve invariant)

Trick: When conclusion rewrites to false, introduce an uninterpreted function
— Trying to prove X=cl, but X actually equals c2
— Instead, try to prove X=stub()
— Prover will fail to prove c2=stub()

* APl modeling is hard

— The Android APl is huge!
* All the APAC teams had this issue
— Use the code when you can

If not (e.g., native methods, fundamental Android methods), write a manual model
— Do itin a demand-driven fashion

Conclusion

 Formal model of Android (and JVM) in ACL2
* Formal proofs about Android apps

e Using our ACL2 models and proof techniques,
we can

— prove functional correctness of apps
— find bugs or functional malware

[This material is based on research sponsored by DARPA under agreement number
FA8750-12-X-0110. The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any copyright notation thereon.]

Questions?

Extra Slides

Related Work on
Android Formal Modeling

 To our knowledge, our formal model of the Android
platform is the most detailed to date.

 Other models (e.g. [*]) are more abstract, focused on
security aspects.

* |t should be possible to formalize abstraction mappings
from our model to those models, ensuring that the
security properties they prove apply to the detailed
model.

[*] Etienne Payet and Fausto Spoto. “An operational
semantics for Android activities.” In Proc. ACM SIGPLAN

Workshop on Partial Evaluation and Program
Manipulation (PEPM), 2014.

Related Work on
Android App Verification

* To our knowledge, our Android app verification is the
most thorough to date.

e Other efforts to mechanically verify functional
properties of Android apps at the code [*] level are
carried out with respect to code-level specifications for
the Java methods that form apps, which are implicitly
informally 'composed” into an overarching
correctness argument for the apps.

e Qur app verification is carried out with respect to a

higher-level specification based directly on user-visible
Inputs.

References

* Jinseong Jeon, Kristopher Micinski, and Jeffrey
Foster.SymDroid: Symbolic execution for Dalvik
bytecode. Technical Report CS-TR-5022, University of
Maryland, College Park, 2012.

 Etienne Payet and Fausto Spoto. “An operational
semantics for Android activities.” In Proc. ACM
SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (PEPM), 2014.

 Masoumeh Al. Haghighi Mobarhan. “Formal specification of
selected Android core applications and library functions.”

Master’s thesis, Chalmers University of Technology, University
of Gothenburg, 2011.

Calculator Apps from the
Engagements

nere are several variants: CalcA, CalcB, ...
ney have very similar functionality.

neir main differences are the presence and
nature of malware:

— Randomly change running result between noon and
lpm.

— Randomly change running result after 3 consecutive
operations (+ - * /) without =.

— Write to file, then send to a remote server, every
operation performed between noon and 1pm.

Our Calculator Apps

 We simplified the engagement apps to work with our current
model:

We use ints instead of doubles (+ - * / are modular, and / by 0 yields
0), because we do not model doubles yet.

A number button modifies the current number directly, instead of
appending a char to the display string and then parsing the string into
a number, because we do not model the relevant Java API yet.

Minor GUI simplifications, e.g. no input from device keyboard (only
from buttons) because we do not model the keyboard Android API
yet.

Malware sets running result to 88888888 after 3 consecutive

operations, because we do not model the random-number-generation
and time-of-day APIs.

* We made a version of the calculator app without malware, and one
with malware.

Formal Functional Specification of
the Calculator

We formalized a state machine in ACL2.

clear op

1/

N

digit op digit val2
—> —> val2pre > <

vallpre vall [vall] vall

INT ———{ [prev val] le——— [val1] [€ <« op
clear op op [val2] digit

digit / T
op
clear
clear
input ::= digit | op | = | clear =

digit==0]11]2]3]4]5]|6]7]8]9
opu=+|-|*|/

[...] is the display

Formal Functional Specification of
the Calculator (cont’d)

We also formalized a simpler state machine and
proved it equivalent to the previous one, in ACL2.

clear digit
l / op digit \
> -0D-
> value-op value-op-value
value [val]] val
INT ——{ [val] |e————— op op
clear op [val2]
\ op digit
clear
input ::= digit | op | = | clear =

digit::=01[2(3[4|5(6]7|8]9
opu=+|-|*]|/ [...] is the display

Proof Failure Exposes Malware

* We attempted to prove in ACL2 the correctness
of the malware calculator app w.r.t. the state
machine specification.

* The proof failed, and one of the failed proof
subgoals revealed the malware:

— In the case when the counter of consecutive
operations is 3

— Trying to prove that the running result is 88888888.

— In general, this kind of failed subgoal shows the
conditions on the state variables under which the
functional specification is violated.

Proof Process Exposed Functional Bugs
in Calculator App without Malware

 We proved in ACL2 that the calculator app
without malware satisfies the state machine
specification(s).

e But first we had to fix two subtle functional

bugs in the (engagement) calculator apps,
which we discovered in the course of our
proof attempts.

A Minor, “Theoretical” Functional Bug

After entering 23! operations without =, the display
stops updating, until either = is entered or another 231
operations without = are entered.

This is due to the counter of the number of operations
(a Java int) wrapping around.

Although incurring in this bug is virtually impossible,
the app violates the functional specification.

The specification could be weakened to require the
display to be correctly updated only if the number of
operations is below a certain value.

But it is much easier to fix the app to avoid the issue.

A More Severe Functional Bug

* Under certain (easily reachable) conditions, the
display is not updated properly.

* E.g. starting the calculator and entering — 8 +
shows 8 on the display instead of -8.

* This is due to some corner case in the logic of the
app implementation, which looks more
complicated than needed (e.g. than a
straightforward encoding of the state
machine(s)). The corner cases eluded informal
manual inspection.

A More Severe Functional Bug (cont’d)

* This functional bug may be representative of a
kind of malware triggered by corner cases in the
state variables of specially crafted, non-
straightforward implementations, that calculate
incorrect results under those conditions.

» Static analyzers that abstract away some
functionality (e.g. that track information flow)
may abstract this kind of malware away.

 Proofs of full functional correctness can uncover
this kind of malware.

