A Quick Tour of the x861sa Books

Shilpi Goel
shigoel@cs.utexas.edu

ACL2 Rump Session Talk

2nd October, 2015

x86isa books release. Modified books/GNUMakefile and doc-related books

Browse files
appropriately (with help from Matt Kaufmann). Note that the x86isa
books are a part of the "everything" regression. See x86isa/README for
more information.
I’ master
shigoel authored on May 21 1 parent f68b973 commit b8bece28f4628b5b339abcfa89e54db8e971ebaa
Showing 100 changed files with 29,240 additions and 0 deletions. Unified Split

Released the x861isa books on 21st May, 2015 (books/projects/x861sa)
License: BSD 3-Clause

Today: ~120 files, ~100K lines (including comments, whitespace, & documentation)

Short-Term Goal

E.g.: Formal Analysis of an Optimized Data-Copy Program

Short-Term Goal

E.g.: Formal Analysis of an Optimized Data-Copy Program

Specification:
Copy data x from linear memory location 19 to
disjoint linear memory location 11.

Short-Term Goal

E.g.: Formal Analysis of an Optimized Data-Copy Program

Specification:
Copy data x from linear memory location 19 to
disjoint linear memory location 11.

o[

Linear
Memory

Programmer
-level mode

Short-Term Goal

E.g.: Formal Analysis of an Optimized Data-Copy Program

Specification:
Copy data x from linear memory location 10 to
disjoint linear memory location 11.

o[
-

Linear
Memory

Programmer
-level mode

Short-Term Goal

E.g.: Formal Analysis of an Optimized Data-Copy Program

Specification:
Copy data x from linear memory location 19 to
disjoint linear memory location 11.

Verification Objective: Lo

After a successful copy, 1@ and 11 contain x.
1

Linear
Memory

Programmer
-level mode

Short-Term Goal

E.g.: Formal Analysis of an Optimized Data-Copy Program

Specification:
Copy data x from linear memory location 19 to
disjoint linear memory location 11.

Verification Objective:
After a successful copy, 1@ and 11 contain x.

Implementation:
Include the copy-on-write technique: 10 and 11
can be mapped to the same physical memory
location p.

» System calls

» Page mapping

» Privileges

. Programmer
» Context Switches _evel mode

Linear Physical
Memory Memory

Short-Term Goal

E.g.: Formal Analysis of an Optimized Data-Copy Program

Specification:
Copy data x from linear memory location 19 to
disjoint linear memory location 11.

Verification Objective:
After a successful copy, 1@ and 11 contain x.

Implementation:
Include the copy-on-write technique: 10 and 11
can be mapped to the same physical memory
location p.

» System calls

» Page mapping

» Privileges
] Programmer System-
» Context Switches -level mode level mode

Linear Physical
Memory Memory

Long-Term Goals

- Get more miles: Boot/run a serious OS (like FreeBSD) on the x861isa model
= Support more x86-64 features

- Verify more serious programs
= E.g., FreeBSD/Linux code for context switching
= Use tools like codewalker to make life easier

What do the x863isa books contain?

Modeling (x86isa/machine)
- A formal, executable x86 ISA model (64-bit mode)

- X86 state

- Specification of x86 instructions (311 opcodes)

- Instruction fetch, decode, and execute function (step function)
- Run function

- Single core

What ¢

Modeling (x86isa/ma
- A formal, execut

- X86 state

- Specification of x&
- Instruction fetch,
- Run function

- Single core

RFLAGS
| |

Control Register

CR8
CR4
CR3
CR2
CR1
CRO

Task Register

Physical Address
————— >

Linear Address
—

Segment Selector
_>

| Register |

Global Descriptor
Table (GDT)

| Segment Sel. | — »{ Seg. Desc.

Code, Data or Stack
Segment (Base =0)

Task-State
Segment (TSS)
>

Interrupt Handler

Interrupt TR

NULL - — »>0de

I — »| TSS Desc.

Vector

Interrupt Descriptor
Table (IDT)

Segment Selector

L Stack

r — — — 3 Seg. Desc.

LDT Desc.

'm— - > Seg.Desc. —

Interr. Handler
Code

Current TSS

—
Stack

GDTR o IST

Local Descriptor
Table (LDT)

Exception Handler
> Code |
®

I
Call-Gate -»| Seg. Desc.
>

F_

XCRO (XFEM)
| |

Linear Address Space

.
O 1

Call Gate | —

NULL - —
L Stack

Protected Procedure
Code |
>

LDTR |=

L Stack

Linear Address

PML4 Pg. Dir. Ptr.

J—>| PML4 | Dir. Pointer | Directory | Table | Offset |
Linear Addr.

Page Dir.

Page Table Page

Physical

PMLA4. Pg. Dir. Page Thl Addr.
Entry L LEntry Entry —|_>

*Physical Address

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Modeling: Verification Effort vs. Utility

Programmer-Level Mode System-Level Mode

Verification of application programs Verification of system programs
Linear memory address space Physical memory address space
(2%4bytes) (22 bytes)

Assumptions about correctness of OS

. No assumptions about OS operations
operations

~912,000 instructions/second

~3.3 million instructions/second (with 1G pages)

Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz, 8 cores, 32GB RAM

Modeling: Verification Effort vs. Utility

System-level Mode

User Space Kernel Space
(Ring 3) (Ring 0)
MOV %rax, 3 save user state
FreeBSDS er' r(:lgc:t;ftem call SYSCALL ,
MOV %rbx, %rax - SYSRET

restore user state

Programmer-level Mode

What do the x863isa books contain?

Modeling (x86isa/machine)
- A formal, executable x86 ISA model (64-bit mode)

What do the x861isa books contain?

Modeling (x86isa/machine)
- A formal, executable x86 ISA model (64-bit mode)

Simulation (x86isa/tools/execution)

- Executable file readers and loaders (ELF/Mach-0)
= A GDB-like mode for dynamic instrumentation of machine code

- Examples of program execution and debugging

What do the x861isa books contain?

Modeling (x86isa/machine)
- A formal, executable x86 ISA model (64-bit mode)

Simulation (x86isa/tools/execution)

- Executable file readers and loaders (ELF/Mach-0)
= A GDB-like mode for dynamic instrumentation of machine code
- Examples of program execution and debugging

Reasoning (x86isa/proofs)

- Helper libraries to reason about x86 machine code
- Proofs of various properties of some machine-code programs

What do the x861isa books contain?

Modeling (x86isa/machine)
- A formal, executable x86 ISA model (64-bit mode)

Simulation (x86isa/tools/execution)

- Executable file readers and loaders (ELF/Mach-0)
= A GDB-like mode for dynamic instrumentation of machine code
- Examples of program execution and debugging

Reasoning (x86isa/proofs)

- Helper libraries to reason about x86 machine code
- Proofs of various properties of some machine-code programs

= Documentation

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA

A Personal Note

- I'made a decision to make my work a part of the ACL2 Community books

- Even though it’s not really ready for primetime...

- Why? Apart from the obvious technical benefits (keep up with changes in
ACL2, books I depend on), this has been incredibly motivating.

A Personal Note

- I'made a decision to make my work a part of the ACL2 Community books

- Even though it’s not really ready for primetime...

- Why? Apart from the obvious technical benefits (keep up with changes in
ACL2, books I depend on), this has been incredibly motivating.

Thank You!

Model Validation

How can we know that our model faithfully represents the x86 ISA?

Validate the model to increase trust in the applicability of formal analysis.

Co-simulations

State-by-State
ACL2 printing lef GDB scripts,

C functions Pin
l x86 ISA model in ACL2
GCC/LLVM Instruction Semantic
Functions
Impl t
No —> mp emen Fetch, Decode, and Execute
Program o missing F ,
1 100100010100 d UnCt|On
wounowse | Opcodes opcodes
oorooesoron | oy | IMplemented?
\ x86
Yes state
4 A
v
Binary Program

Loader in ACL2

Task 1 | x86 ISA Model | Model Validation

Programmer-level Mode: Model Validation

Application Programs

‘A Operating System

x86 ISA + SYSCALL model

Logical Execution
Mode Mode

Task A: Validate the logical mode against the execution mode

Task B: Validate the execution mode against the processor +
system call service provided by the OS

Programmer-level Mode: Execution Mode

A Common Lisp Distribution

T

Programmer-level Mode: Execution and Reasoning

Execution Mode Logical Mode

env env'

ENV ENV'

